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Abstract. With the development of sensors on smart devices, many
applications usually learn an accurate model based on the collected sen-
sors’ data to provide new services for users. However, the collection of
data from users presents obvious privacy issues. Once the companies
gather the data, they will keep it forever and the users from whom the
data is collected can neither delete it nor control how it will be used.

In this paper, we design, implement, and evaluate a practical privacy-
preserving deep learning model that enables multiple participants to
jointly learn an accurate model for a given objective. We introduce a
light-weight data sanitized mechanism based on differential privacy to
perturb participant’s local training data. After that, the service provider
will collect all participants’ sanitized data to learn a global accurate
model. This offers an attractive point: participants preserve the privacy
of their respective data while still benefitting from other participants’
data. Finally, we theoretically prove that our APDL can achieves the
ε-differential privacy and the evaluation results over a real-word dataset
demonstrate that our APDL can perturb participant data effectively.

1 Introduction

Over the past years, by virtue of the rapid advances in the development of sensors
on smart devices, the applications based on sensors have become an essential
and inseparable part of our daily lives. Majority of applications are free, relying
on information collected from user’s device sensors for targeted service. As the
bases, the collected data will be trained to learn an accurate model, which is
usually called deep learning. After that, they will use the trained model as a
foundation of their new services and applications, including accurate image and
speech recognition [1] which surpassing humans [2].

However, the collection of data from users always has a number of privacy
concerns for the data contributors. Nowadays, many companies collect photos,
video, and speech information from individuals with privacy risks. Once the
companies gather the data, they will keep it forever and the users from whom
the data is collected can neither delete it nor control how it will be used [3].
What is worse, the collected voice recordings and images always contain many
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accidentally captured sensitive information, for example, the sound of others
speaking, ambient noises, computer screens, people faces, and other sensitive
items [4]. After processing the above information, the companies can analyze and
obtain users’ live environments and social relationships which are also considered
as privacy information for users.

In many domains, especially those related to medicine, the privacy and con-
fidentiality worries may prevent hospitals and research centers from share their
medical datasets by the law or regulation. As a result, the medical researchers can
only perform the deep learning on the datasets which belong to their own insti-
tutions. However, it is well known that the deep learning model will be trained
more accurately as the training datasets grow bigger and more diverse. Since the
training data is simplex, the researchers may obtain worse models which can not
be used for other datasets. For example, the training dataset which is owned by
a single organization may be homogeneous, the trained model will be overfitted
which produce inaccurate results when used on other inputs. In this case, the
utility of datasets will be reduced significantly resulted by privacy restriction.

The goal of this paper is to design a privacy-preserving collaborative deep
learning model that offers an attractive tradeoff between utility and privacy. To
achieve the goal, we propose a practical privacy-preserving deep learning model
based on differential privacy, named APDL. In APDL, we introduce differential
privacy mechanism to perturb participant local training data and then upload
perturbed data to service provider to train a global deep learning model. The
main contributions of this paper are summarized as follows:

– We propose a novel privacy-preserving collaborative deep learning model
(APDL) which perturb participant data based on differential privacy. The
advantages of APDL are that it not only achieves participant data privacy
preservation but also enables multiply participants to learn deep learning
models on their own inputs collaboratively. As a result, the participant can
benefit from other participants who are concurrently learning similar models.

– To protect participant local training data, we introduce the state-of-the-art
differential privacy notions. We quantify the participant privacy level by opti-
mizing the utility based on the local training model and then develop a light-
weight data sanitized mechanism to preserve the privacy of local training
data. In this manner, using the perturbed training data, the service provider
can efficiently train a global deep learning model to provide service for all
participants without leaking private information of participants.

– We conduct the analysis of APDL in both theory and practice. The results
indicate that our APDL achieves ε-differential privacy and can perturb par-
ticipant data effectively.

The rest of this paper is organized as follows. Section 2 presents some related
works. In this Sect. 3, we present some preliminaries and the system overview,
followed by the details of APDL in Sect. 4. Section 5 presents the theoretical
analysis of privacy. In Sect. 6, we empirically evaluate the performance of our
APDL. Finally, we conclude this paper in Sect. 7.
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2 Related Work

In the past few years, deep learning has been considered to be a significant appli-
cation in big data era. However, most of existing studies has faced an enormous
challenge, that is how to protect user privacy while training a accurate deep
learning model. In this section, we review the current research status of deep
learning and privacy preservation in machine learning.

2.1 Deep Learning

Deep learning is researched to train the nonlinear features and functions from big
data. The authors in [5,6] has given some surveys for deep-learning architectures,
algorithms, and applications. And in some aspects, the deep learning has been
shown to outperform traditional techniques, such as image recognition [7], speech
recognition [1,8], and face detection [9]. In the domain of medical research, deep
learning has been demonstrated its effective for analyzing biomedical data related
to genetics [10] and cancer [11,12].

2.2 Privacy in Machine Learning

Privacy has attracted an increasing concern. A number of approaches have been
proposed to address identity privacy [13–15], location privacy [16–20] and search
privacy [21,22]. Simultaneously, there are many existing works to research the
privacy preservation in machine learning. All of them are try to address the
following three objectives: privacy of data used for learning a model or as input
to an existing model, privacy of the model, and privacy of the model’s output.

Addressing the privacy preservation of training data, the authors in [23–27]
proposed some models based on encryption scheme. They encrypted the train-
ing data with homomorphic encryption and designed some protocols to train the
deep learning model. However, these mechanisms usually had the lower efficiency
and can not be used as a practical solution. In [28], Abadi et al. developed new
algorithmic techniques for deep learning and a refined analysis of privacy costs
within the framework of differential privacy. As a directly related work, Shokri
and Shmatikov [3] presented a system for privacy-preserving deep learning, allow-
ing local datasets of several participants staying home while the learned model
for the neural network over the joint dataset can be obtained by the partici-
pants. Phan et al. [29] also proposed a novel mechanism to preserve differential
privacy in deep neural networks. They intentionally added more noise into fea-
tures which are less relevant to the model output, and vice-versa. Yet, most of
these works still suffer from the low learning accuracy and efficiency. In compar-
ison, out APDL perfectly protects participants’ privacy by utilizing differential
privacy while providing a high-quality learning accuracy.

3 System Overview

As discussed above, massive data collection may invoke unexpected privacy
issues, which is a key bottleneck for the development and widespread of deep
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Fig. 1. Neural network mode

learning. To this end, we design APDL based on differential privacy. In this
section, we first present some preliminaries that serve as the basis of our APDL,
and then present the system model and threat model.

3.1 Preliminaries

Differential Privacy. In our privacy-preserving model, we use the state-of-
the-art privacy notion, Differential Privacy [30], which can not only provides
strong privacy protection but also resist any background knowledge attack from
adversaries. Informally, an algorithm A is differentially private if the output is
indistinguishable to any particular record in the dataset.

Definition 1 (ε-Differential Privacy [30]). Let ε > 0 be the privacy budget.
A randomized algorithm A is ε-differentially private if for all data sets D1 and
D2 differing on at most one element, i.e., d(D1,D2) = 1, and all S ∈ Range(A),

Pr[A(D1) ∈ S] ≤ exp(ε)Pr[A(D2) ∈ S] (1)

Privacy budget ε > 0 is a small constant, which specifies the desired privacy
level. The smaller of ε, the stronger of privacy preservation, leading to more limit
on the influence of items. Typically, ε is small (e.g., ε ≤ 1).

To achieve the differential privacy, there are two well-established techniques:
the Laplace mechanism [31] and the exponential mechanism [32], which are both
based on the concept of global sensitivity [31] to compute over a dataset.

Deep Learning. Deep learning can be seen as a set of techniques applied to
neural networks. Figure 1 is a neural network with 6 inputs, 2 hide layers, and 2
outputs. The neuron nodes are connected via weight variables. In a typical multi-
layer network, each neuron receives the output of the neuron in the previous layer
plus a bias signal from a special neuron, such as b(1), b(2), and b(3). In a deep
learning structure of neural network, there can be multiply layers each with
thousands of neurons.
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Fig. 2. System model of APDL

Each neuron node (except the bias node) is associated with an activation
function f . Examples of f in deep learning are f(x) = max{0, x} (rectified
linear), f(x) = ex−e−x

ex+e−x (hyperbolic tangent), and f(x) = (1 + e−x)−1 (sigmoid).
The output at layer l+1, denoted as a(l+1), is computed as a(l+1) = f(W (l)a(l)+
b(l)), in which (W (l), b(l)) is the weights connecting layers l and l + 1, b(l) is the
bias term at layer l, and a(l) is the output at layer l. In APDL, we assume that
the deep learning model has k layers and the i-th layer owns n(i) nodes.

The learning task is, given a training dataset, to determine these weight
variables to minimise a pre-defined cost function such as the cross-entropy or the
squared-error cost function [33]. In our model, we consider each participant has
trained his own deep learning model using his dataset, expressed as Y = M(X),
in which X is the input dataset, M is the deep learning model, and Y is the
computed output of the network.

3.2 System Model

Our APDL is designed to protect participants’ data privacy without changing
the existed deep learning model. Before describe the details, we derive the basic
components in our APDL in Fig. 2.

– Participants. In APDL, we consider all participants has the same training
objective and each participant has his local training data and local training
model. However, his data maybe very homogeneous and training an overfitted
model which will be inaccurate when used on other inputs. So we design a
service provider (SP) to collect all participants’ local training data and train
a global deep learning model. Before sharing their local data, participants
will sanitize the data using sanitized mechanism (e.g., differential privacy in
APDL) to protect the privacy of data owners.
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– Service Provider (SP). To train the accurate deep learning model, SP
collects the sanitized training data from participants. After that, the global
accurate model is trained based on back propagation (BP) and stochastic
gradient descent (SGD).

3.3 Threat Model

In APDL, malicious attackers may exist around the participants and steal infor-
mation during uploading training data. Then, we consider the SP to be curious-
but-honest. During the training process, SP may be curious about participants’
local data. So SP may be strictly follow the training protocol but also violate
and disclose participants’ privacy information.

3.4 Design Goals

As a privacy-preserving deep learning model, APDL should fulfill the following
requirements.

– Learning accuracy: The proposed mechanism should train an accurate deep
learning model to suit for all participants’ data.

– Security goals: The proposed mechanism should keep the privacy of par-
ticipants’ training data. In more details, no sensitive information about the
data will be leaked to SP and other participants.

4 Design of Sanitized Mechanism

In this section, we design the sanitized mechanism based on the differential
privacy. As described above, one of the most widely used mechanism to achieve
ε-differential privacy is Laplace mechanism [31] (Theorem 1), which adds random
noises to the numeric output of a query, in which the magnitude of noises follows
Laplace distribution with variance Δf

ε where Δf represents the global sensitivity
of function f .

Theorem 1 (Laplace Mechanism [31]). For function f : D → R
n, a random-

ized algorithm Af = f(D) + Lap(Δf
ε ) is ε-differential private, where Lap(Δf

ε )
is generated from the Laplace distribution with parameter Δf

ε . That is:

Pr[Lap(
Δf

ε
) = z] ∝ exp(−z · ε

Δf
) (2)

Given two neighboring datasets D1 and D2, we present the global sensitivity
of function f as follow:

Δf = max
d(D1,D2)=1

‖f(D1) − f(D2)‖1 (3)
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Unfortunately, the naive application of Laplace mechanism results in the
significantly large noise magnitude and uselessness of perturbed data because of
large global sensitivity. So we adopt a practical differentially private method [34]
to sanitize the local training data. In the following, we divide the sanitized
mechanism into two phases: noise calibration, focuses on selecting the magnitude
(denoted as z

(k)
i ) for each output neuron node using local training model; data

sanitization, aims to generate the useful sanitized training data based on the
local training model.

4.1 Noise Calibration for Local Training Model

Based on the pre-defined cost function and local training model, the noise mag-
nitude can be determined by optimizing the cost. In our model, we assume
that each local training model has n(1) input neuron nodes and select the aver-
age sum-of-squares error between computed output Y and true value Y as the
cost function. The sanitized noise injected to input neuron nodes is denoted as
Z = (z(k)1 , z

(k)
2 , . . . , z

(k)

n(k)) in which z
(k)
i is the magnitude of Laplace noise for

output node i in output layer k. For simplicity, we denote the reciprocal of Z as
Zr = (1/z

(k)
1 , 1/z

(k)
2 , . . . , 1/z

(k)

n(k)). After that, we can determine the magnitude
of Laplace noise on each input neuron node via the following programming:

minimize ‖Z‖1
subjective to [M(X) − M(Xp)] · Zr ≤ ε

Z,Zr ≥ 0
d(X,Xp) = 1

(4)

Through the above equations, we can obtain the minimized expected error of
all injected noises onto input neuron nodes since the Laplace noises are indepen-
dent and each of them satisfies E[|Lap(z(k)i )|] = z

(k)
i . Since the first constrain,

we can guarantee the ε-differential privacy for the sanitized local training data.
Then, another purpose of the first constrain is to capture the correlation between
local training model and neighbouring local data. The noise magnitude Z and
Zr also be ensured non-negative by the second constrain.

Since the above formulation (4) is non-convex, it must be transformed into
a convex one to obtain a global optimal solution. For simplicity, we introduce
another two variables Z1 and Z2 and set Z1 = Z,Z2 = Zr. As described above,
we can get z

(k)
i · z

(k)
ri = 1. Thus, another additional constraint can be added to

ensure the reciprocal relationship for each i ∈ [1, n(k)]. Moreover, the constraint
can be relaxed to Z1 · ZT

2 ≥ I. So we can transform the formulation (4) into the
following programming:

minimize ‖Z1‖1
subjective to [M(X) − M(Xp)] · Z2 ≤ ε

Z1, Z2 ≥ 0

Z1 · ZT
2 ≥ I

d(X,Xp) = 1

(5)



384 X. Ma et al.

After that, we first solve the convex formulation in programming (5). Then,
we set Zr = Z2 such that our sanitized mechanism also satisfy ε-differential
privacy and set Z by letting each item z

(k)
i be the reciprocal of the i-th item in

Zr. Since the formulation (5) is convex, we can ensure that our noise calibration
algorithm is outperform the traditional Laplace algorithm.

4.2 Adding Noise to Local Training Data

In this section, a noise vector is generated to sanitize the local training data.
We take the above noise magnitude output Z as input and generate the Laplace
noise to form a useful sanitized local training data. The usefulness of sanitized
data is qualified by minimizing the error between local model output based on
the sanitized training data and the noisy local model output. Specifically, two
error vectors {R,L} are also introduced and the utility is qualified by their root
mean square error (RMSE): 1

2‖R + L‖22. Then, the optimization formulation is
given as follows:

minimize
1
2
‖R + L‖22

subjective to Oz − L ≤ M(Xp) ≤ Oz + R

Xp ∈ {0, 1}n(1)

(6)

where Oz is the noise local model output vector and Oz(i) = v
(k)
i +Lap(z(k)i ), i ∈

[1, n(k)], v
(k)
i is the deep learning model output of node i in layer k.

However, we can easily find that solving formulation (6) is NP-hard by
reducing it from Exact Cover problem (The proof is omitted because of the
limited space and it is similar to that in [35]). So we replace the Xp with Xr

p ,
Xr

p ∈ [0, 1]n
(1)

, to solve the relaxed formulation (6) in our data sanitized algo-
rithm. After that, we can obtain Xp by rounding each item xr

pi to 1 with prob-
ability xr

pi.
After the process described above, the participants can generate the sanitized

local training data. Then, the participants will upload the sanitized data to SP
and SP trains the global deep learning model based the uploaded data. The
details of the process are listed in Algorithm1.

5 Theoretical Analysis

In this section, we theoretically analyze the privacy preservation which APDL
satisfies, which is described above that our APDL is ε-differential privacy.

Theorem 2. Based on the local training data perturbation, APDL satisfies ε-
differential privacy.
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Algorithm 1. Process of APDL for Deep Learning Model
Input: Local training data X, local training model M , privacy budget ε.
Output: Sanitized local training data Xp.
1: Solve mathematical formulation (5);
2: Set Zr = Z2;
3: Set Z be the reciprocal of each item in Zr;
4: Generate noise according to Lap(z

(k)
i ) for each output node i, i ∈ [1, n(k)];

5: for each node i in output layer k do
6: Set Oz(i) = v

(k)
i + Lap(z

(k)
i );

7: end for
8: Relax the constrains in formulation (6);

9: Replace Xp with Xr
p ∈ [0, 1]n

(1)
to solve the relaxed (6);

10: for each node i in input layer do
11: Randomly generate a number ρ in [0, 1];
12: if ρ ≤ xr

pi then
13: Set xpi = 1;
14: else
15: Set xpi = 0;
16: end if
17: end for
18: Send perturbed local training data Xp to SP;

Proof. Since the data sanitization in Sect. 4.2 is considered as post-processing
on differentially privacy without the access of local training data, we consider
that there is no privacy loss in this phase. Hay et al. [36] had shown that any
post-processing of the answers cannot diminish the rigorous privacy guarantee,
so we only need to focus on analyzing the privacy guarantee in Sect. 4.1.

Let M(Di) be the output of local training model with input dataset Di, A
be the sanitized mechanism, and D1,D2 be the neighboring datasets. For any
S = (s1, s2, . . . , sn

(k)) ∈ Range(A), the following formulation can be established:

Pr[A(D1)] = S

Pr[A(D2)] = S
=

n(k)∏

i=1

Pr[A(D1)i = ri]
Pr[A(D2)i = ri]

≥ exp(−
n(k)∑

i=1

1

z
(k)
i

|M(D1)i − M(D2)i|)

≥ exp(− max
d(D1,D2)=1

n(k)∑

i=1

1

z
(k)
i

|M(D1)i − M(D2)i|)

≥ exp(−ε)

(7)

The first step is established because of the noises is injected independently
on each model output; the second step is obtained from the introduced Laplace
noises and triangle inequality, and the last step is derived from the first constraint
in formulation (5).

The proof is complete.
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Utility Analysis. The expected Mean Absolute Error (MAE) is used to mea-
sure the deviation between participant’s raw and perturbed training data, which
is formally defined as following [35].

MAE(X,Xp) = E[
1

n(k)

∑n(k)

j=1
|xj − xpj |] (8)

Let z
(k)
j , lj , rj be the jth entry in vector Z,R,L.

MAE =
1

n(k)
E[

n(k)∑

j=1

|xj − xpj |]

≤ 1
n(k)

(E[
n(k)∑

j=1

|Lap(z(k)j )|] + E[
n(k)∑

j=1

|max{lj , rj}|])

≤ 1
n(k)

(
n(k)∑

j=1

E[|Lap(z(k)j )|] + E[
n(k)∑

j=1

|lj + rj |])

=
1

n(k)
(||Z||1 + E[||R + L||1])

(9)

6 Experimental Evaluation

In this section, we present a series of empirical results of APDL conducted over
MINIST dataset [37] which is composed of 60,000 training handwritten digits
and 10,000 test ones. Then, we use Torch7 [38] and Torch7 nn packages to
construct and train the deep learning model. During the training, we use LeNet
neural network as the training model.

While evaluating the local training data perturbation in APDL, we mainly
focus on analyzing the influence of participants for model accuracy and the per-
turbation quality of APDL. We also compare the accuracy of APDL with the
non-privacy-preserving scheme (NPP). We assume that there are three partic-
ipants contributing their local training data and each participant have 20,000
examples. In the evaluation, we use the probabilistic method to measure the
learning accuracy: P = sum{x = xp}/total, where x is the true value, xp is the
output of the learning model, and total is the number of test examples.

First of all, we carry out the analysis on the training model accuracy influ-
enced by the number of participants. As shown in Fig. 3, the model accuracy
increase with the number of epoch. As the increase of epoch, our APDL can
train a more accurate deep learning model. So the process of test will be more
accurate. Additionally, with more participants joining the training process, the
SP has more training data to learn the model. As described above, the deep
learning model will be trained more accurately as the training datasets grow
bigger and more diverse. So the trained model which has 3 participants has a
better model accuracy than that with 1 or 2 participants.
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Fig. 3. Model accuracy influenced by participants

Fig. 4. Model accuracy influenced by privacy budget

Then, we plot the model accuracy by varying the privacy budget ε in dif-
ferential privacy and compare the accuracy of our APDL with NPP in Fig. 4.
As the simulation result shows, the accuracy of our APDL increases with the
privacy budget ε. With the increasing of ε, APDL will generate less noise to
sanitize the local training data to guarantee the utility. So our APDL will train
a more accurate model. However, the accuracy of our APDL has not reached the
NPP resulted by the added noise.

7 Conclusion

The disclosure of training data in a union deep learning system seriously threat-
ens participants privacy, especially when participants send their raw data to SP.
In this paper, we propose a novel solution, called APDL, to address the pri-
vacy issues in deep learning model. In APDL, we introduce differential privacy
as the sanitized mechanism to perturb participant’s local training data. Our
methodology works for any type of neural network. Therefore, it can help bring
the benefits of deep learning to domains where data owners are precluded from
sharing their data by confidentiality concerns.
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