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Dear editor,

Recently, a new paradigm of location-aware rec-
ommender system (LARS) has become increas-
ingly popular. Compared with traditional rec-
ommendation systems such as collaborative fil-
tering and content-based recommendation, LARS
exploits the spatial aspect of ratings for rec-
ommendations [1]. However, these rating data
contain privacy information such as users’ loca-
tions and preferences, which enable recommender
servers (RS) to easily infer the points of interest of
users. Thus, RS can track users or provide users’
preferences to advertisers, which would seriously
threaten their personal safety.

To solve the privacy issue of LARS, existing
studies [2–4] mainly focused on protecting users’
location privacy, neglecting the history footprint
privacy. However, the reveal of users’ history
footprints to RS would still cause privacy leak-
age. Shen and Jin [5] first proposed to perturb
users’ data by differential privacy on their private
devices, which can protect the privacy of both
users’ location and history data. However, this
scheme cannot be used in practice because it is not
user friendly. Subsequently, they designed another
practical differentially private framework to obfus-

cate users’ privacy data on their own devices [6].
However, the perturbed data retained the category
information of users’ history footprints, which still
could disclose a user’s preference.

In this letter, we propose a novel built-in-
client mechanism, namely APRS, to obfuscate
both users’ locations and history data under un-
reliable RS. In APRS, we introduce the notion of
geo-indistinguishability [3] to perturb users’ loca-
tions to achieve ε1-differential privacy. To protect
users’ history data, we first aggregate these data to
generate a category histogram and then perturb it
to achieve ε2-differential privacy. By using APRS,
RS can efficiently provide service for users without
knowing their raw data. Finally, we theoretically
prove that our APRS can achieve ε-differential pri-
vacy and conduct experiments over a real-world
dataset. The evaluation results demonstrate that
our APRS can not only strengthen users privacy
but also improve the recommendation efficiency
without reducing recommendation accuracy.

APRS overview. Our APRS contains two parts:
location privacy preservation and history data pri-
vacy preservation, depicted in Figure 1. Some pre-
liminaries can be found in Appendix A. To achieve
ε-differential privacy, we divide privacy budget
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into ε1 and ε2, ε1 + ε2 = ε, for location perturba-
tion and history data perturbations, respectively.

Figure 1 Overall APRS procedure.

Location privacy preservation. We introduce the
geo-indistinguishability mechanism [3] to sanitize
a user’s location. Let the user’s current location
be xu ∈ R

2; a sanitized point x̃u ∈ R
2 will be

generated by the Laplace mechanism and then be
sent to RS. Specifically, given the privacy budget
ε1 ∈ R

+ and the actual location xu ∈ R
2, the

probability density function of our noise mech-
anism in polar coordinates with origin at xu is

Dε1(r, θ) =
ε2
1

2πre
−ε1r, where ε21/2π is the normal-

ization factor, r is the distance d(xu, x̃u) of sani-
tized location x̃u from xu, and θ is the angle that
the line xux̃u creates with respect to the horizontal
axis of the cartesian system.

To generate a point (r, θ) fromDε1(r, θ), accord-
ing to [3], two random variables R and Θ that
represent the radius and the angle are indepen-
dent. Thus, we only need to separately generate
r and θ from the marginal probability Dε1,R(r)
and Dε1,Θ(θ), respectively. Overall, the Laplacian
noise generated in [3] is described as follows:

• Generate θ uniformly in [0, 2π).
• Generate p uniformly in [0, 1) and set r =

C−1
ε1 (p), where C−1

ε1 (p) = − 1
ε1
(W−1(

p−1
e ) + 1) and

W−1 is the Lambert W function (the −1 branch).
Finally, the perturbed location x̃u = xu +

〈r cos(θ), r sin(θ)〉 is sent to RS for recommenda-
tion.

History data privacy preservation. To protect
users’ history data privacy, we first convert these
data into a histogram and then adopt a differ-
entially private mechanism to sanitize it. Given
a user’s raw history item vector dr, dr ∈ R

m,
and the public item-category correlation matrix
M , we aggregate the raw history data histogram

as Hr = dr · M, Hr ∈ R
n, which represents the

user’s preference for different categories of items,
and each bin Hri represents the user’s visit counts
for category i. Then, we generate some noise for
each bin and make it satisfy ε2-differential privacy.
We first split the privacy budget ε2 into two por-
tions ε2a and ε2b to sanitize the histogram bins
and histogram clusters, respectively.

Histogram bins perturbation. To cluster these
histogram bins, we should first sort them based on
their counts. However, if we sort them based on
their raw counts, the notion of differential privacy
will be violated [7]. Therefore, we should first per-
turb the raw histogram bins by the Laplace mech-
anism with privacy budget ε2a.

To mitigate the impact of noise, we adopt the
row sampling technique [7] to sanitize these raw
history footprints and achieve ε2a-differential pri-
vacy. To reliably sort two sanitized bins Ĥri

and Ĥrj, we should ensure that their true dif-
ference must be larger than the magnitude of in-
troduced noise. Therefore, we adopt the ratio of
the raw bins’ difference |Hri − Hrj| to that of

the introduced noise,
|Hri−Hrj |√

2/ε2a
, which is treated

as an indicator of the sorting quality [8]. Ac-
cording to Corollary 1 in [7], after performing
the row sampling technique, the ratio becomes

∆ =
|Hri−Hrj |√

2/ln(1+β(exp(ε2a)−1))
, where β denotes the

row sampling probability. Because
|Hri−Hrj |√

2/ε2a
> ∆

for any 0 < β < 1, we conclude that the sampling
leads to more precise sorting.

Now we get the perturbed histogram Ĥr, from
which adversaries cannot guess the user’s accu-
rate history data under any background knowl-
edge. However, the addition of Laplace noise to
the raw histograms will seriously disturb the sort-
ing process. For example, those counts of bins
with zero in the raw histograms Hr will be ar-
tificially changed into non-zero in Ĥr. To allevi-
ate the influence of noise, we adopt a threshold

strategy, defined as Ĥri =
{

Ĥri, if Ĥri > λ

0, otherwise
, where

λ = ηlog(n)/ε2a and η is a revision parameter. By
using the threshold strategy, the introduced noise
for relatively small counts can be smoothed and a
more accurate sorting result can be obtained.

Histogram bins clustering. After sanitizing the
histogram bins, we sort and cluster the perturbed
histogram on the smoothed Ĥr. Because the sort-
ing operation is conducted on differentially private
histogram bins, it does not violate the differential
privacy and reveal any extra privacy any more.

Next, we will cluster the bins over the sorted
sanitized histogram Ĥr. To obtain an optimal
cluster set, we define an error for the cluster

Downloaded to IP: 192.168.0.24 On: 2019-05-10 11:20:52 http://engine.scichina.com/doi/10.1007/s11432-017-9222-7



Gao S, et al. Sci China Inf Sci November 2017 Vol. 60 119103:3

Si as err(Si) = E(
∑

Ĥrj∈Si
(Ĥrj − H̃j)

2
), where

H̃j is the final disclosed histogram bin for cat-

egory j. If Ĥrj ∈ Si, we can compute H̃j =

Si +
Lap(1/ε2b)

|Si| , where Si =

∑
Ĥrj∈Si

Ĥrj

|Si| and |Si|

is the number of histogram bins in i-th cluster.
Thus, the error for cluster Si can be further de-

rived as err(Si) = E(
∑

Ĥrj∈Si
(Ĥrj − H̃j)

2
) =

∑
Ĥrj∈Si

(Ĥrj − Si)
2
+ 2

|Si|(ε2b)2 .

Now, we use a greedy clustering algorithm to
obtain the optimal cluster set. The main idea is
as follows: during the clustering process, we itera-
tively judge whether to put the next bin Ĥrj into

the current cluster Si. If adding Ĥrj to Si results

in a lower error, we will merge Ĥrj into Si; other-
wise, a new cluster will be created. Due to space
limitations, we provide the detailed algorithm in
Appendix B.

Privacy and utility analysis. The privacy of our
proposed APRS depends on the privacy of its com-
ponents. We can theoretically prove that the lo-
cation perturbation and history data perturbation
are ε1-differential privacy and ε2-differential pri-
vacy, respectively. Thus, our APRS satisfies ε-
differential privacy. In addition, we have showed
the utilities achieved by location perturbation and
history data perturbation in theory, respectively.
Detailed analyses are presented in Appendix C.

Experimental evaluation. We conduct a series
of experiments to evaluate the effectivity and ef-
ficiency of our APRS, and compare our method
with the most related scheme S-EpicRec [6] over
a real-world dataset. Firstly, we measure the ra-
dius of retrieval area and the number of businesses
located in the area of retrieval varying with the
privacy budget ε1. The result proves that a less
ε1 will add more noise to the secret location, af-
fecting the system availability. Then, we evaluate
the history data perturbation in APRS from the
respect of perturbed category aggregates quality
and recommendation accuracy. Compared with S-
EpicRec [6], our APRS shows a lower expected
mean absolute error and a similar recommenda-
tion accuracy while using the same privacy budget.
Finally, the simulation results also show that our
APRS is more efficient than S-EpicRec [6]. Due
to space limitations, detailed results and analysis
can be found in Appendix D.

Conclusion. In this letter, we propose a novel
solution, called APRS, to address the privacy is-

sue in LARS. In APRS, we introduce the notion
of geo-indistinguishability to perturb a user’s cur-
rent location and design a differentially private his-
togram to perturb the user’s history data. Theo-
retical analysis and experimental results demon-
strate that our APRS can not only strengthen
users’ privacy but also improve the recommenda-
tion efficiency without reducing recommendation
accuracy.
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Appendix A Preliminaries

In this section, we present some preliminaries that server as the basis of APRS. For convenience, the notations used in this

paper are listed in Tabel A1.

Table A1 Definitions and notations in APRS

Symbol Definition

I the public set of items

C the public category set

C the public item-category correlation matrix

radI the radius of AOI

radR the radius of AOR

xu user uq’s current location

Hr user uq’s aggregated histogram of raw history data

Ĥr user uq’s perturbed aggregated histogram before clustering

H̃ user uq’s perturbed aggregated histogram

Appendix A.1 Histogram

Let I be the public set of items which can be reviewed, |I| = m, and C be the public category set, |C| = n. In LBS

recommendation, each location item is associated with a subset of categories, which is represented by a public correlation

matrix C of size m× n. If the entry ci,j in C is 1, we consider the item i is associated with category j. For each category

j ∈ C, its count is the number of item i ∈ I with cij = 1, i ∈ [1,m], j ∈ [1, n]. The histogram H over the categories C

consists of a set of bins: H = {H1, H2, . . . , Hn}, where each bin Hj is of a count of its corresponding category j ∈ C.

Appendix A.2 Differential Privacy

The privacy-preserving mechanism in our APRS is on the basis of differential privacy [1], which can not only provide

strong privacy protection but also resist any background knowledge attack from adversaries. Informally, an algorithm A is

differentially private if the output is indistinguishable to any particular record in the dataset.

*Corresponding author (email: sgao@cufe.edu.cn)
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Definition 1 (ε-Differential Privacy [1]). Let ε > 0 be the privacy budget. A randomized algorithm A is ε-differentially

private if for all data sets D1 and D2 differing on at most one element, i.e., d(D1, D2) = 1, and all S ∈ Range(A),

Pr[A(D1) ∈ S] 6 exp(ε)Pr[A(D2) ∈ S]

Privacy budget ε > 0 is a small constant, which specifies the desired privacy level. The smaller of ε, the stronger of

privacy preservation, leading to more limit on the influence of items. Typically, ε is small (e.g., ε 6 1).

To achieve the differential privacy, there are two well-established techniques: the Laplace mechanism [2] and the expo-

nential mechanism [3], which are both based on the concept of global sensitivity [2] to compute over a dataset.

Definition 2 (Global Sensitivity [2]). The global sensitivity of a function f : D → Rn, denoted by S(f) is defined as the

largest ℓ1-norm difference ∥ f(D1)− f(D2) ∥1, where D1 and D2 are neighboring datasets that differ at one element. More

formally,

S(f) = max
D1,D2:∥D1−D2∥=1

∥f(D1)− f(D2)∥1

We mainly use the Laplace mechanism in our solution. Intuitively, we should generate some properly Laplace noise to

mask the influence of items.

Definition 3 (Laplace Mechanism [2]). For function f : D → Rn, the Laplace mechanism is achieved by computing

f(D)+ η, where η ∈ Rn is a random vector of independent variables and ηi is generated from the Laplace distribution with

parameter S(f)/ε. That is:

Pr[ηi = z] ∝ exp(−z · ε/S(f))
In this paper, we mainly achieve the differentially private histogram. Given two neighboring histograms H1 and H2, we

represent the global sensitivity of function f as S(f) = max
H1,H2

∥f(H1)− f(H2)∥1. So given a histogram H → Rn, a function

f , and privacy parameter ε, the mechanism A can achieve ε-differential privacy in the following way:

A(H) = f(H)+ < Lap1(
S(f)

ε
), . . . ,Lapn(

S(f)

ε
) >

Appendix A.3 Geo-Indistinguishability

The location privacy definition used in our APRS is based on a generalized variant of differential privacy that can be defined

on an arbitrary set of secrets χ, equipped with a metric dχ [4]. The distinguishability level between the secrets x and x′

can be expressed by the distance dχ(x, x′). Let Z be the obfuscated values reported to recommender server and let P(Z)

denote the probability measures over Z. The multiplicative distance dP on P(Z) is defined as:

dP (µ1, µ2) = supZ∈Z

∣∣∣∣ln µ1(Z)

µ2(Z)

∣∣∣∣
where µ1(Z) and µ2(Z) are the posterior probabilities that the reported locations belong to the set Z ∈ Z when users’

locations are x and x′. From the above equation, we can conclude that dP (µ1, µ2) is small when µ1, µ2 assign similar

probabilities to each reported value.

The perturbed mechanism can be designed as a probabilistic function A : χ → P(Z), which generates a probability

distribution A(x) for each secret x over the reported values Z. The generalized variant of differential privacy, called

dχ-privacy, can be defined as follows [5]:

Definition 4. (dχ-privacy). A mechanism A : χ → P(Z) satisfies dχ-privacy if:

dP (A(x),A(x′)) 6 dX (x, x′), ∀x, x′ ∈ X

or equivalently A(x)(Z) 6 exp(dX (x, x′))A(x′)(Z), ∀x, x′ ∈ X , Z ⊆ Z.

Given different dχ, we can obtain different privacy notions. Generally, we can also scale this metric by the privacy budget

ϵ, represented as ϵdχ . For the location privacy involved in this paper, the secrets χ and reported values Z are all the sets

of locations, while A is an obfuscation mechanism. So we can obtain ϵd2-privacy when using the Euclidean metric d2, a

natural notion of location privacy called geo-indistinguishability in [5]. If for any radius d2, a mechanism makes the user

enjoy ϵd2-privacy within d2, we claim that the mechanism satisfies ϵ-geo-indistinguishability.

Appendix A.4 Accuracy and Utility Metrics

Similar to [5], if the probability of the area of interest(AOI) to be fully contained in the area of retrieval(AOR) is bounded

from below by a confidence factor c, we also consider that is (c, radI)-accurate, where radI is the radius of AOI. Given a

privacy parameter ε and accuracy parameter (c, radI), our goal is to obtain an LBS recommendation (A, radR) satisfying

both ε-geo-indistinguishability and (c, radI)-accuracy.

In this manner, we will introduce the notion of (α, δ)-usefulness to measure the utility of location privacy preservation

in our APRS, which was introduced in [6]. If a location perturbing mechanism A is (α, δ)-useful for each location x ∈ χ

and sanitized location z = A(x), then Pr[d(x, z) 6 α] > δ.

Additionally, we use the similar utility in [7] to measure user’s perturbed aggregated history data. To be more specific,

the expected Mean Absolute Error (MAE) are used to measure the deviation between user’s raw and perturbed category

aggregates, which is formally defined as following [7].

MAE(H, H̃) = E[
1

n

∑n

j=1
|Hj − H̃j |]

where H and H̃ are user’s raw and perturbed category aggregates, respectively.
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Figure A1 The system model of APRS

Appendix A.5 System Model

Our APRS is designed to protect user’s location and history data privacy without changing the existed recommender system.

Before describing APRS, we formally present the definition of a general location-aware recommender system as follows.

Definition 5. Given the location xu of user uq and the requested area radius rI of POIs, a location-aware recommender

system returns recommended items located in uq ’s interesting area defined by AOI(xu, rI), by taking into account uq ’s

access history du and a public item-category correlation matrix C.

To protect the privacy of such a recommendation under an untrusted recommender environment, the privacy information

such as xu and du should be kept in secret. Before describing the details, we derive the basic components in our APRS as

follows (see Fig.A1):

• User Client: User client collects user private data, including location and history footprint, from a variety of user’s

devices (e.g., smartphone, pad, laptop, etc.). As a module, APRS resides on user’s hub device and perturbs the private data

based on the perturbed mechanisms. At the beginning of the recommendation, user will first perturb the private location

and history footprint and send the perturbed data to the untrusted recommender server.

• LBS Recommender Server: LBS recommender server owns all the information of public items and their corre-

sponding categories. In this paper, we do not make any changes to the recommender server to ensure the practical of

APRS. When user requests the recommender service, the LBS recommender server can process the requests and send the

recommender results to user using the existed recommender algorithms.

Notably, during the procedure, the recommender user always does not disclosure his secret current location and history

footprint to the recommender server, and only the perturbed location and history data will be sent. So the privacy of user

is not leaked when he uses the recommendation service.

Appendix A.6 Threat Model

In APRS, malicious attackers may exist around the users and steal information during recommendation. Firstly, we consider

the LBS recommender server to be curious-but-honest. During the recommendation process, the recommender server may

be curious about user’s privacy information, such as current location and history footprints. So the recommender server may

strictly follow the recommender algorithms but also violate and disclose user’s sensitive and private information. Secondly,

external adversaries are also interested in the information delivered by the user. Specially, when user data is sent from

device to the recommender server, attackers can eavesdrop the transmission channel, therefore user private data may need

to be perturbed during the transmission.

Appendix A.7 Design Goals

To be a privacy-preserving location-aware recommender system, APRS should satisfy requirements as follows.

• Quality of Service(QoS). One of APRS goals is to hide the privacy and disclose enough useful information for the

recommender service. So the proposed mechanism should guarantee the utility of the perturbed data and minimize the

effect of sanitized noise on recommender results.

• Privacy Preservation. Another goal of our APRS is to achieve the privacy preservation, which is embodied in the

following aspects.

1. Location privacy. We treat user current location as private data since it reveals user’s trace trajectories and may

potentially suffer physical threats. It requires that the location privacy cannot be revealed to other entities during

the recommendation.
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2. History data privacy. Since the history data represent user’s profiles and preferences, directly revealing one’s history

data would leak his profile privacy. It requires that user’s history footprint cannot be revealed during the recommender

process.

Appendix B A greedy clustering algorithm

We introduce a greedy clustering algorithm to get the optimal cluster set. During the clustering process, we iteratively

judge whether to put the next bin Ĥrj into current cluster Si. If adding Ĥrj into Si results in a lower error, we will merge

Ĥrj into Si; otherwise, a new cluster will be created.

When Ĥrj is added into Si, the resulting error is the error of the new cluster Si∪ Ĥrj and we have the error as following:

err(Si ∪ Ĥrj) =
∑

Ĥrk∈Si∪Ĥrj
(Ĥrk − Si ∪ Ĥrj)

2
+

2

(|Si|+ 1)(ε2b)
2

When Ĥrj is not added into Si, the error is the sum of err(Si) and err(Ĥrj). It is easy to obtain err(Si) from the above

equation. However, we need more efforts to computer the error of Ĥrj .

While Ĥrj is not added into Si, there are n−j+1 possible clusters in which Ĥrj may put. So err(Ĥrj) is a variable which

is dependent on the actual cluster containing Ĥrj and is not known now. However, if we obtain the minimum of err(Ĥrj),

denoted by err∗(Ĥrj), we can also decide whether to add Ĥrj into Si. If Ĥrj locates in potential cluster Sj,l which contains

{Ĥrj , Ĥrj+1, . . . , Ĥrl}, j 6 l 6 n, we can obtain the error for Ĥrj as err∗(Ĥrj) = minl{(Ĥrj − Sj,l)
2 + 2

|Sj,l|2(ε2b)2
}.

In the following, we create a prefix sum array B to efficiently calculate Sj,l, where B ∈ Rn and Bi =
∑i

k=1 Ĥrk. Then

we can obtain Sj,l =
Bl−Bj−1

l−j+1
. After that, we can use the monotonicity of (Ĥrj − Sj,l)

2 and 2
|Sj,l|2(ε2b)2

to calculate

err∗(Ĥrj) : with the growth of l, (Ĥrj − Sj,l)
2 monotonically increase, while 2

|Sj,l|2(ε2b)2
monotonically decreases.

Considering Sj,l, j 6 l 6 n, with the ascending order of his sizes, if (Ĥrj − Sj,l+1)
2 − (Ĥrj − Sj,l)

2 > 2
|Sj,l|2(ε2b)2

−
2

(n−j+1)2(ε2b)
2 , we obtain that err∗(Ĥrj) = (Ĥrj − Sj,l)

2 + 2
|Sj,l|2(ε2b)2

. The reason for our conclusion is that if the

increase of (Ĥrj − Sj,l)
2 between Sj,l+1 and Sj,l exceeds the maximum decrease of 2

|Sj,l|2(ε2b)2
, the minimum point has

been missed.

For better illustration of our proposed greedy clustering algorithm, we show an example as follows.

Example 1. Let Ĥr = {1, 1, 4, 4, 5, 13} be the sorted noisy histogram. Given the current cluster S1 = {1, 1} and ε2b = 0.4,

we now judge whether to put Ĥr3 = 4 into S1. Firstly, we can computer err(S1 ∪ Ĥr3) = (1 + 1 + 4) + 25/6 = 61/6 and

err(S1) = 25/4. Because of err(S1 ∪ Ĥr3) > err(S1), so the sanitized Ĥr3 cannot be put into S1. Then we create the

second cluster S2 = {4, 4} and consider whether to add Ĥr5 to S2. To calculate err∗(Ĥr5), we consider 2 potential clusters,

and obtain err∗(Ĥr5) = 0 + 25/2 = 25/2 when the potential cluster that contains Ĥr5 is {5}. Since err(S2) = 25/4 and

err(S2 ∪ Ĥr5) = 29/6, so err(S2 ∪ Ĥr5) < err(S2) + err∗(Ĥr5) and we set the cluster S2 = {4, 4, 5}. Finally, we set

S3 = {13}.
After the process described above, the users can get the sanitized location and history data. Then the users will send

the perturbed information to recommender server and request the recommender service.

Appendix C Privacy and Utility Analysis

In this section, we theoretically analyze the privacy preservation and utility which APRS satisfies.

Appendix C.1 Privacy of APRS

We now proceed to show that our APRS described above is ε-differential privacy. The privacy of APRS depends on that of its

components. In the following, we will show that the location perturbation and history data perturbation are ε1-differential

privacy and ε2-differential privacy, respectively.

Theorem 1. Based on location and history data perturbation, APRS satisfies ε-differential privacy.

Proof. To prove the privacy preservation of APRS, we just to prove that the location and history data perturbation are

both differential privacy for the corresponding privacy budget. As it is proved in [5], the location perturbing mechanism

satisfies ε1-geo-indistinguishability. However, the geo-indistinguishability is also a generalized variant of differential privacy,

which is described in Section Appendix A.3. So we realize that the location perturbation satisfies ε1-differential privacy.

While perturbing the history data, we added the Laplacian noise twice to the aggregated histogram. So we split the

history data perturbation into two phases: perturbing raw histogram before sorting (Phase A) and perturbing sorted

histogram after clustering (Phase B). Next, we will first prove that Phase A satisfies ε2a-differential privacy. Let D1, D2

be neighboring datasets (i.e., ||D1 − D2|| = 1), A1 be the sanitized mechanism in Phase A, and f(Di) be the category

aggregates of user’s private history data Di. For any r = {r1, . . . , rn} ∈ Range(A1), we have analyzed as follows.

Pr[A1(D1) = r]

Pr[A1(D2) = r]
=

∏
j∈S

Pr[A1(D1)(j) = r(j)]

Pr[A1(D2)(j) = r(j)]
> exp(−

∑
j∈S

εj |fj(D1)− fj(D2)|)
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> exp(− max
||D1−D2||=1

∑
j∈S

εj |fj(D1)− fj(D2)|) > exp(−ε2a)

The first step is established because of the noises is injected independently on each aggregated histogram bin; the second

step is obtained from the introduced Laplace noises and triangle inequality.

Similarly, we can also prove that Phase B satisfies ε2b-differential privacy. Using the sequential composition property [8]

stated below, we learn that Phase A and Phase B together satisfy (ε2a + ε2b)-differential privacy. And all the process of

APRS satisfies (ε1 + ε2a + ε2b)-differential privacy, that is ε-differential privacy. �

Appendix C.2 Utility analysis

Then, we analyze the utility provided by APRS. In APRS, we will show the utilities which are achieved by location

perturbation and history data perturbation, respectively.

As indicated in Section Appendix A.4, we introduce the notion of (α, δ)-usefulness to describe the utility of location

perturbation mechanism. Therefore, given a confidence factor δ, we can get the utility of location perturbation in APRS is

(C−1
ε1 (δ), δ)-useful.

Let Hrj be the j-th bin in the raw histogram, Si be the i-th clustering after perturbation, so we can obtain the following

equation as the utility for history data perturbation:

MAE(Hr, H̃) = E[
1

n

n∑
j=1

|Hrj − H̃j |] = E[
1

n

∑
Si∈S

n∑
j=1

|Hrj −

∑
Ĥrj∈Si

Ĥrj

|Si|
−

Lap(1/ε2b)

|Si|
|]

6 E[
1

n

∑
Si∈S

n∑
j=1

|Hrj −

∑
Ĥrj∈Si

Ĥrj

|Si|
|] + E[

1

n

∑
Si∈S

Lap(1/ε2b)

|Si|
]

= E[
1

n

∑
Si∈S

n∑
j=1

|Hrj −

∑
Ĥrj∈Si

(Hrj + Lap(1/ε2a))

|Si|
|]

6 E[
1

n

∑
Si∈S

n∑
j=1

|Hrj −

∑
Ĥrj∈Si

Hrj

|Si|
|] + E[

1

n

∑
Si∈S

n∑
j=1

∑
Ĥrj∈Si

Lap(1/ε2a)

|Si|
]

= E[
1

n

∑
Si∈S

n∑
j=1

|Hrj −

∑
Ĥrj∈Si

Hrj

|Si|
|]

So the utility of history data perturbation is obtained as above.

Appendix D Experimental Evaluation

In this section, we depict a series of experimental results of APRS conducted over a real-world dataset, which indicate that

APRS can effectively and efficiently fulfill the design goals described in Section Appendix A.7. APRS was implemented using

Java and the experiments were conducted on a machine with a 3.2 GHz CPU and 8GB of RAM. To simulate the existed

LBS recommender system, we conduct the classic recommendation algorithm, collaborative filtering [9], using GraphLab1).

Then we run each experiment 10 times and report the average result. While evaluating the recommendation accuracy, we

use stochastic gradient decent algorithm (SGD) for collaborative filtering.

Dataset. We adopted a real business rating data provided by RecSys Challenge 20132), in which Yelp reviews, business

items, users, and checkins are collected at Phoenix, AZ metropolitan area. The number of item categories is 22 and we use

all the reviews in training dataset, which owns 229,907 reviews from 43,873 users on 11,537 items.

Appendix D.1 Location Perturbation

While perturbing user’s location, we first define a radius r which we wish to be protected, that we assume is 500 meters, and

then set the privacy budget as ε1. This means that taken two points on the radius of 500 meters, their probability of being

the observable of the same secret differ at most by exp(ε1), which is the definition of geo-indistinguishability, and even less

the more we take them closer to the secret. When requesting the recommender service, we choose a large confidence factor

for utility, that is 0.9.

The evaluation results is shown in Fig. D1. During the simulation, we measure the radius of retrieval area (radR) and

the number of businesses located in AOR varying with the privacy budget ε1. As shown in Fig. D1, the radius of retrieval

area is decreasing quickly when ε1 varying from 0.1 to 0.5. And then the radius will fall more gentle. The curve proves that

a less ε1 will bring more noisy for the secret location and thus affect the system availability. That result can also be proved

by the trend of the number of businesses located in AOR. When the radius is large, there are a lot of businesses located in

AOR. So the recommender system will consume more resources to retrieve the recommender results. Varying with ε1, our

APRS will generate a smaller radR to request the service and the recommender server will compute the results from less

1) http://select.cs.cmu.edu/code/graphlab/pmf.html
2) https://www.kaggle.com/c/yelp-recsys-2013
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Figure D1 The evaluation results of location perturbation

businesses with less resources. However, another challenge is that a large ε1 will also increase the risk of location privacy

disclosure. So according the simulation results in Fig. D1, we can set ε1 = 0.5 as the optimal privacy budget for location

perturbation.

Appendix D.2 History Data Perturbation

While evaluating the history data perturbation in APRS, we mainly focus on analyzing the perturbation quality and the

efficiency of recommendation of APRS. To measure the quality, we will send the perturbed history data to GraphLab and

analyze the recommender results in following two aspects:

• Perturbed Category Aggregates Quality: We use the expected MAE metric discussed in Section Appendix A.4 to

measure the perturbed category aggregates quality.

• Recommendation Accuracy: The MAE Loss between the recommender results using raw and perturbed data is con-

sidered, which is defined as following:

Γ =

∑U
u=1

∑m
i=1 |Recuip −GTui|∑U

u=1

∑m
i=1 |Recuir −GTui|

− 1

where U is the number of users, m is the number of items, Recuir , Recuip are the predicted recommender results by user

u for item i using user raw data and obfuscated data, and GTui is the raw rating information which is identified as the

ground-truth from user u to item i.
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Figure D2 The perturbed aggregated category histogram
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First of all, we carry out the analysis on a perturbed aggregated category histogram compared with the corresponding

raw one. As shown in Fig. D2, our APRS divides all the categories into four groups and each category in same group

has the same aggregated count. If the user disclosures his raw history data, the attacker can not only get the user’s

trajectory privacy, but also analyze user’s private preference information. However, after perturbation, the attacker cannot

tell whether the user prefers these categories. Hence, although the user sends his history data which is perturbed by APRS

to the recommender server, it also cannot get user’s preference after aggregating the perturbed data.

In the following, we will analyze the perturbed category aggregates quality by varying the privacy budget for perturbing

the history data. We compare our APRS with the S-EpicRec scheme [10] when the total privacy budget ε2 is varying. And

then, given a certain ε2, we analyze the MAE of perturbed category aggregates by varying the proportion of ε2a in ε2. As

shown in Fig. D3(a), we plot the MAE by varying ε2. Comparing with S-EpicRec scheme, we find that our APRS owns a

lower MAE while using the same privacy budget. The reason is that our APRS introduce a greedy clustering strategy and

it confirms that our clustering strategy indeed introduce less noise for the aggregated categories. Since S-EpicRec just adds

the Laplace noise for each category, it will generate m noises for the aggregated categories and result in a higher MAE.

Additionally, the simulation results also show that the MAE of perturbed category aggregates reduce dramatically at the

beginning and then maintains relatively stable. So we can find that ε2 = 0.4 is the optimal privacy budget for history data

perturbation. Even if we allocate more privacy budget to the perturbation, but that will not bring a lower MAE and may

lead to the disclosure of privacy.

Then, we also plot the MAE by varying the proportion of privacy budget ε2a in ε2 in Fig. D3(b). Given a certain ε2,

we find that the MAE decreases dramatically before ε2a reaches to 0.7. And then the MAE will increase reversely when

ε2a = 0.8 and 0.9. The reason is that the total noise comes from two parts: Lap(ε2a) and Lap(ε2b), ε2b = ε2 − ε2a. While

we allocate less budget for ε2a, more noise will be added to the raw categories. However, with the varying of ε2a, the noise

added to raw data will decrease and the reduced noise exceeds the increased noise for perturbing the sorted histogram.

So the MAE will clearly decrease before ε2a reaches to 0.7. After that, ε2b will be allocated less and more noise will be

generated for perturbing the sorted histogram. When the increased noise exceeds the reduced noise for perturbing raw

categories, the MAE for category aggregates will increase again. It should be noted that when we assign all ε2 to ε2a, the

MAE will reach the lowest point. The reason is that we only perturb the raw aggregated categories before sorting (ε2a = ε2)

and less noise will be generated to perturb the categories than any other points.
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Figure D3 The perturbed category aggregates quality

In Fig. D4, we plot the recommendation accuracy by varying with the privacy budget. As shown in Fig. D4(a), the

recommendation MAE loss decreases rapidly with the increasing of privacy budget ε2. When we assign more budget ε2 for

histogram perturbation, less noise will be introduced and the recommender results will be more similar with the ground

truth. The simulation results also show that our APRS owns a similar recommendation accuracy with S-EpicRec when

we assign more privacy budget ε2 for it. So our APRS can still obtain accurate recommender results after perturbing the

aggregated categories. What’s more, we also find that the recommendation MAE loss decreases slowly and nearly flat after

ε2 = 0.4. Hence, we find that the simulation result is in good agreement with the conclusion in Fig. D3(a) and consider the

ε2 = 0.4 is the optimal privacy budget for history data perturbation.

In Fig. D4(b), we also plot the recommendation accuracy by varying with the proportion of ε2a in ε2. The simulation

results show that the recommendation accuracy will reduce dramatically at the beginning and then will increase reversely

when ε2a = 0.8 and 0.9. The reason is similar with that in Fig. D3(b). If we assign less privacy budget ε2a to perturb the

raw histogram before sorting, more noise will be added and the perturbation will be huge. So the recommendation MAE

loss is large. With the varying of ε2a, the reduced noise for perturbing raw histogram will exceeds the increased one for

perturbing sorted histogram. So the recommendation MAE loss will decrease before ε2a reaches to 0.7. After that, the
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increased noise for perturbing sorted histogram will exceeds the reduced one, the recommendation MAE loss will increase

again. While ε2a = ε2, the privacy budget will be all assigned to perturbing the raw histogram. So less noise will be

generated to perturbation and the recommendation MAE loss is lowest.
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(a) Recommendation accuracy by varying privacy budget ε2
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Figure D4 Recommendation accuracy evaluation

Finally, we also discuss the efficiency of APRS along with the S-EpicRec scheme. As shown in Fig. D5, the running

time always maintains stable by varying the ε and it is no longer than 400ms. The reason is that the varying of ε does not

affect the size of categories, so the running time will not be influenced. Additionally, the simulation results also show that

our APRS is more efficient than S-EpicRec. Therefore, based on the above analysis, we can convinced that our APRS is

sufficiently efficient to perturb user’s location and history data while requesting the LBS recommendation.
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Figure D5 The efficiency evaluation of APRS
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