
BPMS: Blockchain-Based Privacy-Preserving
Multi-Keyword Search in Multi-Owner Setting

Sheng Gao , Yuqi Chen, Jianming Zhu , Zhiyuan Sui , Rui Zhang , and Xindi Ma ,Member, IEEE

Abstract—Searchable encryption (SE) has emerged as a cryptographic primitive that allows data users to search on encrypted data.

Most existing SE schemes usually delegate search operations to an intermediary such as a cloud server, which would inevitably result

in single-point failure, privacy leakage, and even untrustworthy results. Several blockchain-based SE schemes have been proposed to

alleviate these issues; however, they suffer from some issues, such as the support for multi-keyword multi-owner model, query privacy

and data storage availability. In this paper, we propose BPMS, blockchain-based privacy-preserving multi-keyword search in multi-

owner setting, which supports searching over encrypted data in trustworthy, private and efficient manners. The attribute Bloom filter

has been introduced into our BPMS to build indexes, which protects query privacy and improves index generation performance.

To guarantee data storage availability, our BPMS leverages the advantages of IPFS (InterPlanetary File System) to store large scale of

encrypted data. Security proof and comparative analysis in theory indicate that our BPMS is more secure and efficient. A series of

experiments conducted on a real-world dataset further demonstrate that our BPMS is feasible in practice.

Index Terms—Searchable encryption, blockchain, multi-keyword multi-owner, privacy preserving, IPFS

Ç

1 INTRODUCTION

WITH the prosperity of the Internet and cloud storage,
outsourcing large-scale data to an intermediary such

as a cloud server has been a popular paradigm for minimiz-
ing local data storage and maintenance burden [1]. How-
ever, due to the separation of data ownership and data
control, it would suffer from various issues, such as privacy
leakage, unauthorized access, illegal tampering and dele-
tion [2]. The most common way is to encrypt the data before
outsourcing, which would subsequently raise the critical
issue of how to search on encrypted data. Searchable
encryption (SE) as a promising, cryptographic primitive has
emerged, which guarantees data confidentiality while not
sacrificing searchability [3], [4]. Specifically, there are three
entities in a typical SE system, where a data owner (DO)

extracts a set of keywords, encrypts them into indexes and
sends them with the encrypted data to a cloud server (CS),
and then a data user (DU) creates a trapdoor associated
with the query keywords and submits it to the CS responsi-
ble for searching. Nowadays, SE has been widely used in
various fields such as healthcare [5], smart grid [6], and the
Internet of Things [7].

Exisitng SE can be divided into searchable symmetric
encryption (SSE) [8], [9], [10] and public key encryption with
keyword search (PEKS) [11], [12], [13]. On the whole, SSE is
more efficient while inevitably suffering from expensive key
management and distribution issues, and PEKS is more flexi-
ble while facing keyword guessing attack [14]. Existing works
that investigate privacy-preserving SE can be divided into
single-keyword single-owner [8], [15], multi-keyword single-
owner [16], [17], [18], single-keyword multi-owner [19], [20],
and multi-keyword multi-owner [21], [22], [23]. However,
these schemes usually delegate an honest-but-curious CS to
take charge of storage and search management, which would
cause some endogenous problems, such as single-point fail-
ure and untrustworthy results. That is, a malicious CS might
deviate from the pre-defined specification and act in unautho-
rized tampering and deletion, which would make the
retrieved results untrustworthy.

In recent years, the blockchain [24], [25] as a distributed
ledger technology has been introduced to SSE, which ena-
bles SSE to be executed in decentralized, transparent and
immutable manners. Specially, most of existing works [5],
[26], [27], [28], [29] exploit the blockchain to achieve trust-
worthy and fair SSE. However, these schemes are con-
fronted with some challenges. Firstly, all these either
support single-keyword single-owner [26], [27], [29] or
multi-keyword single-owner [5], [28], lacking in the support
for multi-keyword multi-owner in blockchain-based SSE.
Secondly, they are confronted with privacy leakage risk.
Although some privacy-preserving SSE schemes have been

� Sheng Gao, Yuqi Chen, Jianming Zhu, and Zhiyuan Sui are with the
School of Information, Central University of Finance and Economics, Beijing
100081, China. E-mail: {sgao, zjm}@cufe.edu.cn, yuqichen1112@163.com,
suizhiyuan2010@gmail.com.

� Rui Zhang is with the Institute of Information Engineering, Chinese Acad-
emy of Sciences, Beijing 100081, China. E-mail: zhangrui@iie.ac.cn.

� Xindi Ma is with the School of Cyber Engineering, Xidian University,
Xi’an, Shaanxi 710071, China, and also with the Guangxi Key Laboratory
of Trusted Software, Guilin University of Electronic Technology, Guilin
541004, China. E-mail: xdma1989@gmail.com.

Manuscript received 16 March 2022; revised 9 July 2022; accepted 1 August
2022. Date of publication 5 August 2022; date of current version 6 September
2023.
This work was supported in part by the National Natural Science Foundation
of China under Grants 62072487 and 61902290, in part by Beijing Natural
Science Foundation under Grant M21036, in part by the National Statistical
Science Foundation of China under Grant 2020LD01, in part by the Key
Research and Development Program of Shaanxi under Grant 2020ZDLGY09-
06, in part by Zhejiang Provincial Natural Science Foundation under Grant
LD22F020002, and in part by Guangxi Key Laboratory of Trusted Software
under Grant kx202004.
(Corresponding authors: Sheng Gao and Xindi Ma.)
Recommended for acceptance by W. Cai.
Digital Object Identifier no. 10.1109/TCC.2022.3196712

2260 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

2168-7161 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8118-411X
https://orcid.org/0000-0001-8118-411X
https://orcid.org/0000-0001-8118-411X
https://orcid.org/0000-0001-8118-411X
https://orcid.org/0000-0001-8118-411X
https://orcid.org/0000-0003-4923-9939
https://orcid.org/0000-0003-4923-9939
https://orcid.org/0000-0003-4923-9939
https://orcid.org/0000-0003-4923-9939
https://orcid.org/0000-0003-4923-9939
https://orcid.org/0000-0003-2320-747X
https://orcid.org/0000-0003-2320-747X
https://orcid.org/0000-0003-2320-747X
https://orcid.org/0000-0003-2320-747X
https://orcid.org/0000-0003-2320-747X
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0003-0002-5593
https://orcid.org/0000-0002-0764-3741
https://orcid.org/0000-0002-0764-3741
https://orcid.org/0000-0002-0764-3741
https://orcid.org/0000-0002-0764-3741
https://orcid.org/0000-0002-0764-3741
mailto:sgao@cufe.edu.cn
mailto:zjm@cufe.edu.cn
mailto:yuqichen1112@163.com
mailto:suizhiyuan2010@gmail.com
mailto:zhangrui@iie.ac.cn
mailto:xdma1989@gmail.com


proposed, query privacy may be violated by side channel
attack. Thirdly, the encrypted data are stored in a DO
locally or outsourced to a CS, which inevitably impacts data
availability. Any crash would make a DU cannot recover
the data even if the trapdoor matches the index.

To alleviate these issues, in this paper, we propose a
Blockchain-based Privacy-preserving Multi-keyword Search
scheme in multi-owner setting, namely BPMS, which can
achieve trustworthy and private search while improving the
data storage availability and system efficiency. Specifically, to
support multi-keywordmulti-owner in blockchain-based SSE
while resisting privacy leakage, we improve MKSSMDO [23]
by introducing the attribute Bloom filter [30] to guarantee
query privacy in our BPMS. Moreover, we adopt the
IPFS (InterPlanetary File System) [31] to achieve distributed
encrypted data storage, which further enhances the efficiency
and robustness of our BPMS. Themain contributions are sum-
marized as follows.

� Trustworthymulti-keyword search inmulti-owner setting.
To solve the endogenous problems in existing cloud-
based SE schemes, our BPMS introduces the block-
chain to take charge of search operations for trustwor-
thy results. Moreover, our BPMS supports multi-
keyword search in multi-owner setting based on
MKSSMDO [23], which allows each DO to construct
search indexes with owned randomly chosen keys for
different data files and supports each DU to conduct
multi-keyword search by using conjunctive query.

� Index and query privacy preservation. We found that
query privacy in MKSSMDO [23] would be violated
by revealing the positions of keywords in the trap-
door. Our BPMS adopts the attribute Bloom filter [30]
to construct a secure index and generates a secure
trapdoor by using keywords hashing to hide their
positions for guaranteeing query privacy.

� Secure and efficient storage. To ensure data availability,
our BPMS leverages the IPFS [31] to store encrypted
data files in decentralization, deduplication and
tamper resistance manners. The encrypted data files
can be retrieved with content addressing from multi-
ple nodes at once, which can provide a high through-
put. Compared with existing IPFS-based storage
paradigm for SE, our BPMS expounds the detailed
process of uploading the identifiers in the IPFS to the
blockchain instead of the encrypted data files.

� Efficiency with improved security. Our BPMS ensures
enhanced security against query privacy leakage
without sacrificing performance. Theoretical analysis
and experimental evaluation using a real-world data-
set demonstrate that our BPMS and MKSSMDO [23]
achieve comparable time cost for trapdoor generation
and search. Especially, the time cost for index con-
struction of our BPMS is lower.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review related work. In Section 3, we introduce
some preliminaries required for the design of our BPMS. In
Section 4,we present systemoverviewof our BPMSand in Sec-
tion 5, we detail the design of our BPMS. Theoretical analysis
and experimental evaluation are conducted in Section 6 and 7,
respectively. Finally, we conclude the paper in Section 8.

2 RELATED WORK

SSE has been regarded as an effective primitive for searching
over encrypted data, which is first proposed by Song et al. [8]
in single-keyword single-owner setting. Subsequently, the
security models have been formalized by Goh [32] and Curt-
mola et al. [9]. In this section, we briefly summarize the state-
of-the-art works on SSE that are related to our BPMS.

2.1 Cloud-Based SSE

Cloud-based SSE schemes with various characteristics sum-
marized in [4], [9], [10] have been proposed for supporting
different search types, such as conjunctive search [16], [33],
[34] and ranked search [15], [17], [23], [35], [36].

Golle et al. [33] first formalized a security model for con-
junctive Boolean search, and then proposed two schemes
under the securitymodel with different communication costs.
Ballard et al. [16] used bilinear pairing to achieve conjunctive
Boolean search with constant size trapdoors and less storage
overhead. Cash et al. [34] extended conjunctive Boolean
search to support very large databases and text search at the
cost of revealing data access patterns. To further reduce the
communication costs, ranked search arises. Wang et al. [15]
first defined ranked SSE, and then utilized order-preserving
symmetric encryption to achieve single-keyword ranked
search while preserving keyword privacy against frequency
relevance attack. Cao et al. [17] first investigated multi-key-
word ranked search. They measured the similarity between a
search query and a document based on secure inner product
computation, and then proposed two multi-keyword ranked
search schemes for different levels of privacy under the
defined threat models. Sun et al. [35] improved the search
result accuracy and efficiency in [17] by the vector space
model and a proposed tree-based index. To reduce the cost of
search, Ding et al. [36] proposed a privacy-preserving and
efficient multi-keyword top-k search based on group parti-
tion. However, these schemes only support single-owner set-
ting, which suffer from complicated key distribution and
considerable communication costs acrossmulti-owner.

Several SSE schemes inmulti-owner setting have been pro-
posed [21], [22], [23]. Zhang et al. [21] used an additive order
and privacy-preserving function family to achieve ranked
search in multi-keyword multi-owner setting. Guo et al. [22]
introduced a trusted third party to distribute keys for generat-
ing encrypted index and trapdoor, and then proposed a heu-
ristic weight generation algorithm by taking into account the
data quality to achieve a reasonable multi-keyword search in
multi-owner setting. However, it would incur the risk of sin-
gle-point failure and increase the computational cost. Yin
et al. [23] enabled the CS to compute the similarity of a multi-
keyword conjunctive query to a data file satisfying the query
for achieving ranked search without the involvement of an
extra intermediary. However, the reveal of the positions of
keywords in the trapdoor would cause the leakage of query
privacy. On the whole, the trustworthiness of search results
depends on the CS in these schemes, which inevitably causes
some endogenous security issues asmentioned above.

2.2 Blockchain-Based SSE

To alleviate the endogenous security issues, blockchain-
based SSE attracts widespread attention. Hu et al. [26]

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2261



first exploited the well-designed smart contract to replace
the CS for achieving trustworthy and financially-fair
search. Tahir et al. [37] proposed to store the encrypted
data on a permissioned blockchain and use probabilistic
trapdoor to hide the search pattern. To resist threats that
come from both the CS and DUs in decentralized storage,
Li et al. [27] and Cai et al. [29] utilized the blockchain to
guarantee the fairness when dispute happens. However,
all these schemes are proposed in single-keyword single-
owner setting. Chen et al. [5] extended the single-key-
word search in [26] to support Boolean search. They
respectively store the search index on the blockchain and
the encrypted data in the CS, and only those DUs authen-
ticated by the DO could obtain the trapdoor for searching.
Obviously, it cannot protect query privacy and causes
considerable communication cost. Jiang et al. [28] used
the Bloom filter [38] to get the low-frequency keywords
for improving the efficiency of SSE in multi-keyword sin-
gle-owner setting. To the best of our knowledge, the
blockchain-based SSE in multi-keyword multi-owner set-
ting has not been deeply investigated, which limits
diverse search patterns. Moreover, due to the use of the
centralized model, storing encrypted data in DOs locally
or outsourcing to a CS will inevitably reduce the data
availability.

3 PRELIMINARIES

For the sake of description, we first introduce the main nota-
tions used in this paper, as shown in Table 1, and then pres-
ent the relevant background knowledge of our BPMS.

3.1 Basic Cryptography

Definition 1. Bilinear Mapping [23], [39]. Let G1 and G2 be
two cyclic multiplicative groups with the same composite order
q ¼ q1 � q2, where q1; q2 2 Zq are two large primes. A bilinear
mapping ê is defined as ê : G1 � G1 ! G2, which satisfies the
following properties.

� Bilinearity: 8u; v 2 G1; 8a; b 2 Z�q , then we have
êðua; vbÞ ¼ êðu; vÞab.

� Computability: 8u; v 2 G1, there is a polynomial
time algorithm to compute êðu; vÞ.

� Non-degeneracy: If g1; g2 are the generators of G1,
then êðg1; g2Þ is a generator of G2.

Definition 2. Discrete Logarithm Problem (DLP) Assump-
tion [23], [40]. Let g be a generator of cyclic multiplicative
group G with order q. Given g and ga, the DLP assumption is
that there is no probabilistic polynomial time (PPT) adversary,
who can output a 2 Z�q with a non-negligible advantage.

Definition 3. Decisional Diffie-Hellman (DDH) Assump-
tion [23], [41]. Let g be a generator of cyclic multiplicative
group G with order q. Given three random elements a; b; c 2
Z�q , the DDH assumption is that there is no PPT adversary,
who can distinguish the tuple ðg; ga; gb; gabÞ from the tuple
ðg; ga; gb; gcÞ with a non-negligible advantage.

3.2 Blockchain and IPFS

The Blockchain is first introduced into Bitcoin [42], which
achieves trustworthy transactions among those mutually dis-
trusting nodes. By integrating these technologies such as dis-
tributed ledger, cryptography, consensus mechanism and
smart contract, it can store transactions in consistent, immuta-
ble, and traceable manners [24]. Considering the demands of
large storage space for data volume expansion and high net-
work bandwidth for data synchronization, it is improper to
directly store large scale of data on blockchains [43]. To
strengthen system scalability and guarantee data availability,
IPFS (InterPlanetary File System) [31] has emerged, which
exploits content-based addressing instead of location-based
addressing to achieve decentralized data storage. Specifically,
a large file is split into blocks and each block has a content
identifier (CID) generated by a cryptographic hash function.
Then, a Merkle directed acyclic graph that represents the file
as a whole can be formed by linking these CIDs, which can
help to achieve immutability, deduplication and tamper
proof. Finally, the file can be recovered by fetching those
blocks across network nodes at once, which is implemented
by a distributed hash table (DHT) [44]. The DHT that stores
the key-value pairs is dispersed over all network nodes, where
each node only hosts a part of them. It is used for locating the
nodes that store the required blocks. When looking for a spe-
cific value, the request node communicateswith a nodewhose
identifier is close to the key. It either returns the corresponding
value or forward it to other nodeswith closer identifiers [45].

3.3 Attribute Bloom Filter

Bloom filter (BF) is first proposed by Bloom [38], which is
used to check whether or not an element is included in a set

TABLE 1
Summary of Notations

Notation Description

DO The set of data owners, denoted as DO ¼ fDO1; DO2; . . . ; DOjDOj}
F i The data file set owned byDOi, denoted as F i ¼ fFi;1; Fi;2; . . . ; Fi;jF ijg
Wi;j The keyword set of Fi;j, denoted asWi;j ¼ fwi;j;1; wi;j;2; . . . ; wi;j;jWi;jjg
IFi;j The secure index of Fi;j

ski;j The temporary key used to generate IFi;j
u An authenticated data user
Q The query keyword set of u, denoted asQ ¼ fw1; w2; . . .; wjQjg
ru; su Two temporary keys chosen by u to generate trapdoor
T ðQÞ The trapdoor generated by u for queryQ
D A pre-defined keyword dictionary that is the collection of keyword sets of all data files
idðFi;jÞ The CID of Fi;j

L The list that contains the identifiers of matched data files

2262 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



in the manner of space and time trade-offs. However, it only
provides membership query and suffers from a certain false
positive rate. Yang et al. [30] extended BF to attribute Bloom
filter (ABF) to achieve both the membership check and the
attribute localization in much lower false positive rate. To
insert an element e into ABF, e is first shared with ðm;mÞ
secret sharing scheme by randomly generating m� 1 ele-
ments rl;e, and the m-th element is set as rm;e ¼ r1;e � r2;e �
� � � � rm�1;e � e. The insert position of rl;e in the ABF,
denoted as HlðatteÞ, is computed by the hash function Hlð�Þ,
where l ¼ 1; 2; . . . ;m and atte is the attribute associated
with e. When the conflict happens, a prior element occupied
in the same position would be reused.

3.4 Review of Yin et al’s Scheme

Yin et al. [23] proposed MKSSMDO to support multi-key-
word search in multi-owner setting, where DOs are allowed
to choose different keys to construct indexes and authenti-
cated DUs can also randomly choose keys to generate trap-
doors without knowing the keys of different DOs.
MKSSMDO [23] consists of multiple DOs, multiple DUs and
a CS. It is worth noting that the scheme mainly includes four
phases, namely system initialization (Init), secure index
construction (IndexCon), trapdoor generation (TrapGen)
and search (ServerSearch). We breifly review the design of
MKSSMDO in Yin et al.’s scheme [23] as follows.

� Initð1�Þ ! ðG1;G2; ê; q; g; h; q1; q2Þ: Taking a security
parameter � as input, bilinear parameters
fG1;G2; ê; q; gg, a hash function h and two important
parameters q1, q2 are generated.

� IndexConðWi;j; ski;j; h; q1Þ ! IFi;j : The index con-
struction algorithm is run by DOs. For the data file
Fi;j 2 F i owned by DOi, it takes the keyword set
Wi;j, a temporary key ski;j, the hash function h and
the parameter q1 as inputs and outputs the corre-
sponding index IFi;j .

� TrapGenðQ; su; ru; h; q2Þ ! T ðQÞ: The trapdoor gen-
eration algorithm is run by an authenticated data
user u. Taking a query Q of u, two randomly chosen
keys su; ru, the hash function h and the parameter q2
as inputs, the algorithm outputs the trapdoor T ðQÞ.

� ServerSearchðIFi;j ; T ðQÞÞ ! encrypted file: The
search algorithm is run by a CS. Taking the index
IFi;j and the trapdoor T ðQÞ as inputs, the algorithm
outputs the corresponding encrypted file if IFi;j
matches T ðQÞ.

Though MKSSMDO is a more practical SE scheme, it can-
not guarantee query privacy in essence. Taking a query of u
for example, the trapdoor for Q is denoted as

T ðQÞ ¼
T1 ¼ fgsu�

PjQj
k¼1 hðwkÞ; pw1

; pw2
; . . .; pwjQjg

T2 ¼ gq2�ru�ðŝuþ1Þ

T3 ¼ gru�q2

:

8>><
>>:

It is worth noting that T1 contains the positions of query
keywords in keyword dictionary D. Since D is public and
the trapdoor is transmitted on public channel, anyone can
uncover query keywords by simply checking the keywords
at positions indexed by pw1

; pw2
; . . . ; pwjQj in D.

4 SYSTEM OVERVIEW

In this section, we first present the system model of our
BPMS, and then respectively define the key algorithms and
security model for our BPMS. Finally, we put forward the
overall design goals.

4.1 System Model

As shown in Fig. 1, we consider a blockchain-based SSE sys-
tem, which consists of four entities as Data Owners (DOs),
Data Users (DUs), Blockchain and IPFS.

� Data Owners. DOs mainly take charge of secure
index construction. For each data file Fi;j 2 F i, DOi

first builds the keyword set Wi;j 2 D and then per-
forms encryption operations to construct the secure
search index IFi;j . To achieve more robust and effi-
cient storage, DOi encrypts Fi;j with a symmetric
key and gets the corresponding identifier by sending
it to the IPFS. To achieve trustworthy search, DOi

packages IFi;j and the identifier into a transaction
and sends it to the blockchain.

� Data Users. DUs have to be strictly authenticated
by DOs before entering the system, and the authen-
ticated data user u will generate the trapdoor
according to query keywords of interest. Rather
than searching for only one keyword at a time, u
can perform some certain operations on a query
keyword set Q 2 D to achieve multi-keyword
search. To prevent unauthorized access to the data
files, u requests the decryption keys from DOs after
receiving the identifiers of encrypted files from the
blockchain.

� Blockchain. Our BPMS employs the consortium
blockchain that is composed by a set of pre-defined
nodes for achieving trustworthy search. It stores the
encrypted indexes and conducts the accurate match
operations by using smart contract. Specifically, after
receiving the trapdoor T ðQÞ from u, each node of the
consortium blockchain traverses indexes and per-
forms search operation to match them with T ðQÞ.
Once consensus achieved, the identifiers of matched
data files are sent back to u. Note that our BPMS

Fig. 1. System model of BPMS.

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2263



adopts voting-based consensus mechanism, which
can improve the system efficiency.

� IPFS. The IPFS is responsible for the storage of
encrypted data files. The large file would be split
and stored in different nodes across the network.
After receiving the identifiers of target files from u,
the IPFS retrieves encrypted files from different
nodes at once and sends them to u.

More specifically, multiple DOs have certain data files
and have demand of outsourcing them to share with
authenticated DUs [46]. The authentication method can
refer to the scheme proposed in [47]. Specifically, in
step �1 , DOi uses a symmetric encryption algorithm to
encrypt owned files, sends them to the IPFS and records
the identifier of each file returned by the IPFS in step �2 .
As shown in step �3 , DOi then utilizes a self-chosen tempo-
rary key to encrypt the pre-extracted keyword set into an
index for each data file. The index along with the identifier
of the corresponding file is sent to the blockchain. Because
our BPMS supports multi-owner setting, different DOs are
allowed to use independent and distinct keys to generate
indexes.

A data user who wants to search encrypted data sends
authentication request to corresponding DOi in step �4 , and
DOi who grants the permission shares public parameters
with the authenticated data user u in step�5 . In step�6 , u uses
the public parameters and two randomly selected keys to
convert the query keyword set of interest into a trapdoor and
sends it to the blockchain. It should be pointed that in our
BPMS, u can generate the trapdoor without knowing the
keys that are owned by different DOs for index generation.
According to the trapdoor, the operation ofmatching indexes
is implemented by smart contract on the blockchain and the
identifiers of matched files are sent back to u as shown in step
�7 . u then requestsDOi for the access authorization of the cor-
responding encrypted files and obtains the decryption keys
in step�8 and step�9 . The identifiers of matched files are sent
to the IPFS by u in step�10 , and finally the encrypted files that
can be decrypted by u are returned in step�11 .

4.2 Definition of BPMS

For the sake of presentation, we mainly define four key
algorithms in our BPMS and the search in the IPFS will be
descried separately.

� SystemSetupð1�Þ ! ðG1;G2; ê; q; g; h;Ht; q1; q2Þ: Tak-
ing a security parameter � as input, bilinear parame-
ters fG1;G2; ê; q; gg, a hash function h, n hash
functions Ht (t ¼ 1; 2; . . . ; n) for the ABF and two
important parameters q1, q2 are generated.

� GenIndexðWi;j; ski;j; h;Ht; q1Þ ! IFi;j : The index gen-
eration algorithm is run by a DO. For each data file
Fi;j 2 F i owned by DOi, it takes the keyword set
Wi;j, a temporarily chosen key ski;j, the hash function
h, these n hash functions Ht in the ABF and the
parameter q1 as inputs, and outputs the secure search
index IFi;j .

� GenTrapdoorðQ; su; ru; h;Ht; q2Þ ! T ðQÞ: The trap-
door generation algorithm is run by a DU. Taking a
query Q, two randomly chosen keys su; ru, the hash
function h, these n hash functions Ht in the ABF and

the parameter q2 as inputs, the algorithm outputs the
corresponding trapdoor T ðQÞ.

� SearchðIFi;j ; T ðQÞÞ ! idðFi;jÞ: This algorithm is exe-
cuted by the consensus committee in the consortium
blockchain. It takes the index IFi;j and the trapdoor
T ðQÞ as inputs and outputs idðFi;jÞ if IFi;j matches
T ðQÞ.

4.3 Security Model

In our BPMS, any DO or DU that has been authenticated [47]
can join the consortium blockchain and access the encrypted
indexes and the submitted trapdoors. Each node in the con-
sortium blockchain is considered to be honest-but-curious.
That is, it will perform all blockchain operations as pre-
defined protocols, but it is curious about the privacy of the
encrypted data files and the queries.

With the above considerations, we consider two interac-
tive games between an adversary A and a challenger C,
which are used to prove that our BPMS is secure in indistin-
guishability against chosen keyword attack (IND-CKA)
under the random oracle model.

GameGame11: A is allowed to get access to index construction
oracle for polynomial times and continuously generate
indexes with self-selected keyword sets.

� Setup The challenger C runs SystemSetup and sends
public parameters to A.

� Phase 1 The adversary A is allowed to query the
index construction oracle for polynomial times with
different keyword sets. Upon receiving a keyword
set from A, the challenger runs GenIndex to produce
the corresponding index and returns it to A.

� Challenge A chooses two sets of keywords W0 and
W1 with the same size and sends them to C. C ran-
domly selects a bit b 2 f0; 1g, encrypts the corre-
sponding keyword setWb into the index and sends it
to A.

� Phase 2 Same as Phase 1, A continues to query the
index construction oraclewith different keyword sets.

� Guess A outputs the guess b0 2 f0; 1g on b, if b ¼ b0,
then Awins the game.

GameGame22: A is allowed to get access to trapdoor generation
oracle for polynomial times with self-selected query key-
word sets.

� Setup The challenger C runs SystemSetup and sends
public parameters to A.

� Phase 1 A is allowed to query the trapdoor genera-
tion oracle for polynomial times with different
search keyword sets. Upon receiving a search key-
word set from A, the challenger runs GenTrapdoor
to produce the corresponding trapdoor and return it
to A.

� Challenge A chooses two sets of query keywords Q0

and Q1 with same size and sends them to C. C ran-
domly selects a bit b 2 f0; 1g, encrypts the corre-
sponding keyword set Qb into the trapdoor and
sends it to A.

� Phase 2 Same as Phase 1, A continues to query the
trapdoor generation oracle with different search key-
word sets.

2264 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



� Guess A outputs the guess b0 2 f0; 1g on b, if b ¼ b0,
then Awins the game.

The advantage that the adversaryAwins the above games
are defined as AdvIndexA ¼ jPr½b ¼ b0	 � 1

2 j and AdvTrapdoorA ¼
jPr½b ¼ b0	 � 1

2 j, respectively. For any PPT adversary A, if the
advantage AdvIndexA and AdvTrapdoorA are negligible, then our
BPMS achieves IND-CKA security under the random oracle
model.

Definition 4. Our BPMS satisfies IND-CKA security under the
random oracle model.

4.4 Design Goals

To achieve trustworthy and privacy-preserving multi-key-
word search in multi-owner setting, our BPMS should
simultaneously meet the following design goals.

� Effective Search. Our BPMS should provide trustwor-
thy and accurate search results when DUs conduct
conjunctive keywords search on encrypted data of
multiple DOs.

� Privacy Preservation. Our BPMS should prevent
adversaries from knowing the plaintext of encrypted
keywords derived from indexes or trapdoors.

� Reliable Storage. Our BPMS should provide high
availability of encrypted data storage, which can
help DUs keep from suffering from issues like sin-
gle-point failure.

� Running Efficiency. Our BPMS should guarantee the
efficiency be acceptable in evaluation of index con-
struction, trapdoor generation and search algorithm.

5 DESIGN OF OUR BPMS

In this section, we detail the design of our BPMS, including
system initialization, secure index construction, query trap-
door generation, search on the blockchain and search in the
IPFS. The notions used have been presented in Table 1.

5.1 System Initialization

In the system initialization phase of our BPMS, given a large
security parameter �, DOi that is strictly authenticated
before entering the system can run SystemSetup to generate
global parameters fG1;G2; ê; q; g; h;Ht; q1; q2g. The bilinear
parameters fG1;G2; ê; q; gg are posted to the bulletin board,
where ê : G1 � G1 ! G2 is a bilinear map, G1 and G2 are two
multiplicative cyclic groups with the same composite order
q and g is a generator of G1. A cryptographic one-way hash
function h : f0; 1g� ! Z�q and n independent and unified
hash functions Ht are generated for the ABF, where Ht :
f0; 1g� ! Z�q ; t ¼ 1; 2; . . . ; n. Note that they are all used to
map an arbitrary string to an element in Z�q . In addition,
DOi also generates two �-bit large primes q1; q2 2 Zq that
are shared among those authenticated DOs in a secure man-
ner, where q ¼ q1 � q2. Any DU that is authenticated by DOi

can access the parameter q2 via a secure communication
channel, which is used to generate a query trapdoor [23]. It
should be pointed that although the authenticated DUs can
also obtain q1 due to the fact that q is public, it would not
affect the security of our BPMS. That is because the tempo-
rary key randomly generated by each DO independently is
also needed to encrypt the keywords of a data file.

5.2 Secure Index Construction

In Section 3, we have briefly introduced the ABF [30], which
would be used for secure index construction and match
search. Specifically, in our BPMS, DOs run GenIndex to gen-
erate the secure index for a data file, as shown inAlgorithm 1.

Algorithm 1. GenIndex

Input: the keyword set Wi;j, a temporary key ski;j 2 Z�q , the
hash function h, n hash functions Ht; t ¼ 1; 2; . . . ; n, the
parameter q1 2 Zq

Output: the secure index IFi;j
1: IFi;j  ;;
2: Compute

QjWi;jj
k¼1 ghðwi;j;kÞþq1�ski;j ;

3: for l ¼ 1 to n� 1 do
4: Generate rl;Fi;j 2 G1 at random;
5: end for
6: Compute rn;Fi;j as rn;Fi;j  r1;Fi;j � r2;Fi;j � . . .� rn�1;Fi;j �QjWi;j j

k¼1 ghðwi;j;kÞþq1�ski;j ;

7: for t ¼ 1 to n do
8: Compute the inserted position in IFi;j as Htðwi;j;1jj

wi;j;2jj. . .jjwi;j;jWi;j jÞ;
9: Insert the element rt;Fi;j into IFi;j ;
10: end for
11: return IFi;j

Taking the file Fi;j as example, DOi first initializes an
empty array, and uses a temporarily chosen key ski;j to com-
pute

QjWi;jj
k¼1 ghðwi;j;kÞþq1�ski;j according to the keyword set Wi;j.

To pad the array, DOi then randomly generates n� 1 ele-
ments rl;Fi;j 2 G1, where l ¼ 1; 2; . . . ; n� 1 and sets rn;Fi;j as

rn;Fi;j ¼ r1;Fi;j � r2;Fi;j � . . .� rn�1;Fi;j �
YjWi;jj

k¼1
ghðwi;j;kÞþq1�ski;j :

To determine where to insert the elements, DOi further
hashes wi;j;1jjwi;j;2jj. . .jjwi;j;jWi;jj with these n independent
and unified hash functions Ht to obtain Htðwi;j;1jjwi;j;2jj
. . .jjwi;j;jWi;jjÞ and insert element rt;Fi;j into the array at the
position indexed by Htðwi;j;1jjwi;j;2jj. . .jjwi;j;jWi;jjÞ, where t ¼
1; 2; . . . ; n and “jj” denotes the conjunction operator.

To make it more clearly, we present a simple example of
the secure index construction, which is shown in Fig. 2. Sup-
pose there are three hash functions, and the conjunction of
keywords of data file Fi;j, denoted as cascadei;j that repre-
sents wi;j;1jjwi;j;2jj. . .jjwi;j;jWi;jj. Given three elements

r1;Fi;j ; r2;Fi;j ; r3;Fi;j , where r3;Fi;j ¼ r1;Fi;j � r2;Fi;j �
QjWi;jj

k¼1

ghðwi;j;kÞþq1�ski;j , we can compute the inserted position for

Fig. 2. An example of secure index construction.

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2265



rt;Fi;j by hashing cascadei;j with Ht ðt ¼ 1; 2; 3Þ. That is to
compute Htðwi;j;1jjwi;j;2jj. . .jjwi;j;jWi;jjÞ. Because the cascadei;j
is considered to be fixed for each data file with an indepen-
dent ABF, the hash collision in our BPMS can be avoided
during the secure index construction.

5.3 Query Trapdoor Generation

To protect query privacy with the search keyword set Q, we
should generate the trapdoor T ðQÞ in a secure manner
against side channel attack.

Algorithm 2. GenTrapdoor

Input: the query keyword set Q, two secret keys su; ru 2 Z�q , the
hash function h, these n hash functions Ht; t ¼ 1; 2; . . . ;
n, the parameter q2 2 Zq

Output: the trapdoor T ðQÞ
1: for each wk 2 Q do
2: Compute hðwkÞ;
3: end for
4: Compute gsu �

PjQj
k¼1 hðwkÞ;

5: for t ¼ 1 to n do
6: ComputeHtðw1jjw2jj. . .jjwjQjÞ;
7: end for
8: Generate T1 as T1  fgsu�

PjQj
k¼1 hðwkÞ; ðH1ðw1jjw2jj. . . jjwjQjÞ;

. . . ; Hnðw1jjw2jj. . . jjwjQjÞÞg;
9: Compute ŝu as ŝu � su ¼ 1 mod q;
10: Compute T2 as T2  gq2�ru�ðŝuþ1Þ;
11: Compute T3 as T3  gru �q2 ;
12: Get T ðQÞ as T ðQÞ  fT1; T2; T3g;
13: return T ðQÞ

As shown in Algorithm 2, u first uses a temporary key

su 2 Z�q to compute gsu �
PjQj

k¼1 hðwkÞ. To indicate the positions
for getting the elements in each index during search process
while realizing query privacy preservation, u also computes
n hash values Htðw1jjw2jj. . .jjwjQjÞ; t ¼ 1; 2; . . . ; n. To imple-
ment the query, u further chooses another temporary key
ru 2 Z�q to compute gq2�ru�ðŝuþ1Þ and gru�q2 , where ŝu is the
inverse of su such that su � ŝu ¼ 1 mod q. Thus, inspired
by [23], for the query keyword set Q ¼ fw1; w2; . . . ; wjQjg,
the corresponding trapdoor T ðQÞ is computed as

T ðQÞ ¼

T1 ¼ fgsu�
PjQj

k¼1 hðwkÞ; ðH1ðw1jjw2jj. . .jjwjQjÞ; . . . ;
Hnðw1jjw2jj. . .jjwjQjÞÞg

T2 ¼ gq2�ru�ðŝuþ1Þ

T3 ¼ gru �q2

8>>>><
>>>>:

5.4 Search on the Blockchain

Each node in the consortium blockchain runs the Search
algorithm that can be implemented using smart contract to
match the trapdoor with the index. The consensus commit-
tee adopts voting-based consensus mechanism to make the
matching process trustworthy and efficient. Once the con-
sensus is achieved, it will return the list L that contains
idðFi;jÞ to u, where idðFi;jÞ is the CID of Fi;j in the IPFS.
Finally, according to L, u requests decryption keys from
DOs. Note that the Search algorithm only outputs idðFi;jÞ,
the retrieval of encrypted files is conducted in the IPFS.

The process of search on the blockchain is presented in
Algorithm 3. Upon receiving T ðQÞ, given the index IFi;j ,

the node first fetches the elements from IFi;j at the positions
denoted by Htðw1jjw2jj � � � jjwjQjÞ; t ¼ 1; 2; . . . ; n and com-

putes
QjWi;jj

k¼1 ghðwi;j;kÞþq1�ski;j as

YjWi;jj

k¼1
ghðwi;j;kÞþq1�ski;j ¼ r1;Fi;j � r2;Fi;j � � � � � rn;Fi;j :

Subsequently, the node determines whether or not the
following equality holds. That is,

ê

 YjWi;jj

k¼1
ghðwi;j;kÞþq1�ski;j ; T3

!
¼? êðT1; T2Þ=êðT1; T3Þ:

If the equality holds, then Fi;j is the data file that u wants
to search, and the node adds the CID of Fi;j to the list L. The
correctness of the equality can be verified as follows.

Algorithm 3. Search

Input: the index IFi;j , the trapdoor T ðQÞ
Output: idðFi;jÞ
1: for l ¼ 1 to n do
2: if rl;Fi;j ¼ NULL then
3: return False;
4: end if
5: end for
6: Compute

QjWi;j j
k¼1 ghðwi;j;kÞþq1�ski;j as r1;Fi;j � r2;Fi;j � � � � �

rn�1;Fi;j � rn;Fi;j ;

7: Compute êð
QjWi;jj

k¼1 ghðwi;j;kÞþq1�ski;j ; T3Þ;
8: Compute êðT1; T2Þ=êðT1; T3Þ;
9: if êð

QjWi;jj
k¼1 ghðwi;j;kÞþq1�ski;j ; T3Þ=êðT1; T2Þ=êðT1; T3Þ then

10: return idðFi;jÞ;
11: else
12: return False;
13: end if

On the right-hand side, we can compute êðT1; T2Þ=
êðT1; T3Þ as

êðT1; T2Þ=êðT1; T3Þ ¼
êðgsu�

PjQj
k¼1 hðwkÞ; gq2�ru�ðŝuþ1ÞÞ

êðgsu�
PjQj

k¼1 hðwkÞ; gru�q2Þ

¼ êðg
PjQj

k¼1 hðwkÞ; gq2�ruÞsu�ŝu � êðgsu�
PjQj

k¼1 hðwkÞ; gru�q2Þ

êðgsu�
PjQj

k¼1 hðwkÞ; gru�q2Þ

¼ êðg
PjQj

k¼1 hðwkÞ; T3Þ:

On the left-hand side, we can compute êð
QjWi;jj

k¼1
ghðwi;j;kÞþq1�ski;j ; T3Þ as

ê

 YjWi;jj

k¼1
ghðwi;j;kÞþq1�ski;j ; T3

!

¼ êðg
PjWi;j j

k¼1 hðwi;j;kÞ � g
PjWi;j j

k¼1 q1�ski;j ; gru�q2Þ

¼ êðg
PjWi;j j

k¼1 hðwi;j;kÞ; gru�q2Þ � êðg
PjWi;j j

k¼1 q1�ski;j ; gru�q2Þ

¼ êðg
PjWi;j j

k¼1 hðwi;j;kÞ; gru�q2Þ � êðg; gÞjWi;jj�q1�ski;j�ru�q2

¼ êðg
PjWi;j j

k¼1 hðwi;j;kÞ; gru�q2Þ

¼ êðg
PjWi;j j

k¼1 hðwi;j;kÞ; T3Þ:

2266 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



Obviously, if jQj ¼ jWi;jj and Q contains the same key-
words asWi;j, then the equality holds.

5.5 Search in the IPFS

After receiving L from the blockchain, the data user u sends
it to any network node in the IPFS. To obtain an encrypted
data file, the node first needs to determine which nodes that
store the blocks corresponding to the data file. As we
detailed in Section 3.2, the DHT is used for implementing
this operation. That is, we can identify those nodes that con-
tain the required blocks.

Whereafter, it is necessary to establish connections with
these nodes where the blocks are stored. In the IPFS, a block
exchange protocol called BitSwap that supports connecting
nodes is used to request data from other nodes. The node
can send the list L that contains idðFi;jÞ to these connected
nodes and obtain the blocks at once. It has been proved that
the IPFS can provide a high throughput [31], which makes u
get the required data file in an efficient manner.

6 THEORETICAL ANALYSIS

In this section, we first analyze the security of BPMS and
then theoretically compare our BPMS with those related
state-of-the-art schemes.

6.1 Security Analysis

Our BPMS satisfies IND-CKA security under the random
oracle model if both Theorem 1 and Theorem 2 hold.

Theorem 1. The index of our BPMS is indistinguishable against
adaptive chosen keyword attack under the random oracle model.

Proof. We prove the security of index in our BPMS in
GameGame11. We assume that there is a PPT adversary who has
a non-negligible advantage � to break the index encryp-
tion algorithm, so we can also construct a simulator B
who can solve the DDH problem with a non-negligible
advantage. tu

GameGame11: C first randomly selects m 2 f0; 1g, if m ¼ 0, C sets
tuple t0 : ðg;A ¼ ga; B ¼ gb; C ¼ gabÞ, if m ¼ 1, C sets tuple
t1 : ðg;A ¼ ga; B ¼ gb; C ¼ gcÞ, where a; b; c are three ele-
ments randomly chosen from Z�p. Then tuple tm is sent to B,
and B plays a game with the adversary A on behalf of the
challenger C.

� Setup. B runs SystemSetup and sends public param-
eters to A.

� Phase 1. A adaptively chooses some keyword sets
and queries the index construction oracle to obtain
the corresponding ciphertexts. Then A outputs two
keyword setsW0,W1 and sends them to B.

� Challenge. B randomly selects g 2 f0; 1g and

encrypts Wg as t ¼ g
PjWg j

k¼1 hðwg;kÞ � C. If m ¼ 0, then
C ¼ gab. Since sk is a randomly chosen element,
jWg j � sk � q1 is also a random element. We let ab ¼
jWg j � sk � q1, thus t ¼ g

PjWg j
k¼1 hðwg;kÞ � C ¼ g

PjWg j
k¼1 hðwg;kÞ�

gab ¼ g
PjWg j

k¼1 hðwg;kÞþjWg j�sk�q1 , where t is a valid element
of the index construction oracle. If m ¼ 1, C ¼ gc,

thus t ¼ g
PjWg j

k¼1 hðwg;kÞþc. Since c is a random element,

t is a random element in G1 and contains no informa-
tion aboutWg .

� Phase 2. A continues to use self-selected keyword
sets to obtain corresponding indexes.

� Guess.A outputs the guess g 0 of g. If C chooses m ¼ 0,
which means C sends a valid tuple t0 : ðg;A ¼ ga;B ¼
gb; C ¼ gabÞ to B. Since A has a non-negligible advan-
tage � to break the index generation algorithm, the
probability that the guess g 0 of g satisfying g 0 ¼ g is 1

2þ
� and the probability that the guess m0 of m satisfying
m0 ¼ m ¼ 0 is 1

2þ �. If C chooses m ¼ 1, which means C
sends an invalid tuple t1 : ðg;A ¼ ga;B ¼ gb; C ¼ gcÞ
toB. Thus, the probability that the guess g 0 of g satisfy-
ing g 0 ¼ g is 1

2 , and correspondingly the probability
that the guessm0 ofm satisfyingm0 ¼ m ¼ 1 is 1

2 .
Based on the game, the advantage AdvDDH

B that B solves
theDDH problem is computed as

AdvDDH
B ¼

���� 12Pr½m ¼ m0jm ¼ 0	 þ 1

2
Pr½m ¼ m0jm ¼ 1	 � 1

2

����
¼
����
�
1

2

�
1

2
þ �

�
þ 1

2
� 1
2

�
� 1

2

���� ¼ �

2
:

Therefore, if the adversary A has a non-negligible advan-
tage � to break the index generation algorithm, then the sim-
ulator B is able to solve the DDH problem with a non-
negligible advantage �

2 which is contradict with the DDH
assumption. Thus, the advantage AdvIndexA that A wins the

game satisfies AdvIndexA ¼ jPr½g 0 ¼ g	 � 1
2 j 
 z where z is a

negligible probability, which means that the encryption for
constructing index in our BPMS satisfies indistinguishabil-
ity against adaptive chosen keyword attack under the ran-
dom oracle model.

Theorem 2. The trapdoor of our BPMS is indistinguishable
against adaptive chosen keyword attack under the random ora-
cle model.

Proof. We prove the indistinguishability of trapdoor in our
BPMS in GameGame22, the security of trapdoor is based on the
DLP assumption. tu

GameGame22: In the game, A is allowed to get access to
GenTrapdoormultiple times and obtain trapdoors according
to self-selected query keyword sets.

� Setup. C runs SystemSetup and sends public param-
eters to A.

� Phase 1. A adaptively chooses some query keyword
sets and queries the trapdoor generation oracle to
issue corresponding trapdoors. Then A outputs two
query keyword setsQ0 andQ1 and sends them to C.

� Challenge. C randomly selects g 2 f0; 1g and

encryptsQg as g
su �
PjQg j

k¼1 hðwkÞ.

� Phase 2. With the same as Phase 1, A continues to
get access to GenTrapdoor and issue adaptively gen-
erated trapdoors based on different self-selected
query keyword sets.

� Guess. A outputs the guess g 0 of g. Due to the
DLP assumption, given the trapdoor T ðQgÞ of
Qg , the query keywords cannot be recovered by

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2267



analyzing gsu �
PjQg j

k¼1 hðwkÞ, the one-way property of h
further ensures the privacy of query keywords.
Thus, the probability that the guess g 0 of g satisfy-
ing g 0 ¼ g is 1

2 .
Based on the game, the advantage AdvTrapdoorA that Awins

the game satisfies AdvTrapdoorA ¼ jPr½g 0 ¼ g	 � 1
2 j 
 z, where z

is a negligible probability. Thus, the trapdoor generation in
our BPMS satisfies indistinguishability against adaptive
chosen keyword attack under the random oracle model.

6.2 Comparative Analysis

In terms of functionality and complexity, we make a com-
prehensive comparison between our BPMS and previous
related schemes.

6.2.1 Functionality Comparison

We mainly compare our BPMS with those schemes [5], [23],
[26], [27], [28], [29], focusing on trustworthy search, query
privacy, multi-owner, multi-keyword and IPFS storage, as
shown in Table 2.

As for trustworthy search, these schemes [5], [26], [27],
[28], [29] introduce the blockchain to guarantee trustworthi-
ness except MKSSMDO that relies on a centralized CS. For
query privacy, MKSSMDO leaks the positions of keywords
in dictionary D during the process of trapdoor generation.
Chen et al. [5] proposed to use complex Boolean expressions
to build indexes for supporting multi-keyword search.
However, a DU needs to reveal query expressions to obtain
trapdoors returned by a DO, which is undoubtedly an inva-
sion of the DU’s query privacy. Both MKSSMDO and our
BPMS take multi-keyword search for multiple data owners
into consideration. Those schemes [5], [26], [27], [28], [29]
essentially consider single-owner model, which would have
problems of complex key distribution and heavy communi-
cation overhead in multi-owner setting. Jiang et al. [28] pro-
posed blockchain-based multi-keyword search, which
improves the efficiency by narrowing down the searching
space with a Bloom filter [38]. However, they would suffer
from high communication and storage costs by directly
uploading encrypted files to the blockchain. For the storage
concerns, some schemes [5], [23], [27] store encrypted data
files in a centralized model, which inevitably reduces the
data availability. Cai et al. [29] proposed to achieve efficient
encrypted keyword search over decentralized storage like
Storj 1 and Sia 2 by preserving data locality. Hu et al. [26]

only mentioned the use of IPFS storage while nothing is
given. Only our BPMS presents how to enhance the data
availability by using the IPFS storage.

6.2.2 Complexity Comparison

We mainly make a complexity comparison between our
BPMS and MKSSMDO [23], both of which are the type of
multi-keyword multi-owner searchable encryption. Table 3
presents the comparison including computation cost and
output size in predominant phases. It should be pointed out
that the cost of randomly generating elements in G1 during
index construction phase and the cost of multiplication in
G1 during search phase are not included in MKSSMDO.
Nevertheless, we have included them in the comparison to
ensure fairness.

As for index construction, in MKSSMDO, ghðwi;j;kþq1�skiÞ is
computed for each keyword which causes the computation
cost of keywords encryption in a data file to be jWi;jjðhþ
AZq þ EG1

Þ. In addition, jDj � jWi;jj elements in G1 are also
needed to be generated to pad the index. Besides the com-
putation cost of keywords encryption, our BPMS needs
jWi;jj � 1 multiplications in G1, n� 1 elements generation
operations in G1 and n� 1 XOR operations to generate
rn;Fi;j , jWi;jj � 1 cascade operations and n hash operations of
H in the ABF to insert elements. Apart from the time cost of
keywords encryption, the remaining time cost of index in
the two schemes are mainly affected by RG1

, which is the
operation of randomly generating elements in G1. Com-
pared with MKSSMDO, the time cost of RG1

in our BPMS
would be greatly reduced. That is because the number of
operations needed only depends on the number of hash
functions. As for trapdoor generation, in MKSSMDO, jQj
hash operations of h, jQj � 1 additions in Zq, one multiplica-
tion in Zq and one exponentiation in G1 are needed for T1

while two multiplications in Zq, two exponentiations in G1

and one addition in Zq are required for the generation of T2

and T3. This phase in our BPMS is similar to MKSSMDO
except that our BPMS requires additional jQj � 1 cascade
operations and n hash operations of H. As for search, the
CS in MKSSMDO needs three pairing operations, jQj � 1
multiplications in G1 and one multiplication in G2 to com-
plete the phase while three pairing operations, n� 1 XOR
operations and one multiplications in G2 are required in our
BPMS. The index size of MKSSMDO and our BPMS is
jDjjG1j and njG1j, respectively. It is obvious that our BPMS
has less storage cost of the index than that of MKSSMDO
for n� jDj in practice. The trapdoor size of these two
schemes is the same, which is 3jG1j.

TABLE 2
Functionality Comparison With Related State-of-the-Art Schemes

Scheme Trustworthy Search Query Privacy Multi-owner Multi-keyword IPFS Storage

MKSSMDO [23] ✗ ✗ ✓ ✓ ✗
Chen et al. [5] ✓ ✗ ✗ ✓ ✗
Hu et al. [26] ✓ ✓ ✗ ✗ —
Li et al. [27] ✓ ✓ ✗ ✗ ✗
Jiang et al. [28] ✓ ✓ ✗ ✓ ✗
Cai et al. [29] ✓ ✓ ✗ ✗ ✗
Our BPMS ✓ ✓ ✓ ✓ ✓

1. https://www.storj.io
2. https://sia.tech

2268 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



7 EXPERIMENTAL EVALUATION

In this section, we conduct comprehensive experiments to
evaluate the practical performance of our BPMS and make a
comparison with MKSSMDO [23] under various settings.

7.1 Evaluation Setup

Dataset. We leverage the real-world Enron email data-
set [48] for evaluation. The raw dataset contains 619446
emails collected from 158 users, from which we randomly
select 1000 data files as the experimental dataset, and then
use Scikit-learn [49] to extract keywords that would be
inserted into the dictionary D for each data file. For the sake
of performance analysis on our BPMS, we set the number of
keywords in a data file from 10 to 80 and the number of
data files from 100 to 800, respectively.

Implementation. All experiments are implemented in
Java by using JPBC library [50] configured on Ubuntu 16.04
desktop system with 3.20 GHz Intel Core (TM) i7-8700 and
8 GB RAM. We independently run every experiment 20
times to obtain the average result. The Type A1 elliptic
curve used is y2 ¼ x3 þ x and the length of q1, q2 is set to be
128 bits. The experiments on the blockchain are conducted
on Hyperledger Fabric v1.4.4 [51], where 4 peers are config-
ured, and the consensus algorithm is set as Raft [52]. The
performance is tested by Hyperledger Caliper v1.4.0 [53].

7.2 Evaluation of Index Construction Algorithm

We conduct two kinds of experiments to evaluate the time
cost of index construction algorithm GenIndex in our BPMS
under different number of hash functions andmake the com-
parison with MKSSMDO. Specifically, given the fixed size of
the dictionaryD as 200, Fig. 3(a) shows the time cost of gener-
ating index with varying the number of keywords in a data
file and Fig. 3(b) depicts the time cost of secure index genera-
tion for different number of data files with the fixed number
of keywords as 50 in a data file. It should be pointed out the
time cost of MKSSMDO is also affected by the size ofDwhile
our BPMS is not. The time cost of randomly generating ele-
ments in G1 is not included in MKSSMDO.WhenD is larger,
it would be considerable. Here we have included this part of
time cost in the comparison.

As shown in Fig. 3(a), the time cost of index construction
in our BPMS linearly increases when the number of key-
words contained in a data file varies from 10 to 80. That is
because a hash operation of h, an addition in Zq and an

exponentiation in G1 have to be performed for each key-
word, the time taken by cascade operation and multiplica-
tion in G1 also depends on the number of keywords. When
the number of hash functions is set of 5, 10 and 15, the time
cost of BPMS grows with the increasing number of hash
functions. The reason is that each hash function would be
executed in BPMS to compute the position for element
insertion. Compared with MKSSMDO, given the fixed size
of D as 200, our BPMS takes considerable less time even
when the number of hash functions increases to 15. That is
because in our BPMS, the time cost of randomly generating
elements in G1 is greatly reduced. The time cost of
MKSSMDO does not vary with the number of keywords.
Because although more encryption operations are required
as the number of keywords increases, fewer operations of
generating elements in G1 to pad the index are needed.
Fig. 3(b) further illustrates that the time cost linearly grows
with the increasing number of data files, where the fixed
number of keywords in a data file is 50 and the fixed size of
D is 200. Given a fixed number of data files, the time cost of
our BPMS increases with the number of hash functions
while is less than that of MKSSMDO. That is because the
operations for index construction that depend on a data file
would be repeated with varying the number of data files.

7.3 Evaluation of Trapdoor Generation Algorithm

We perform two kinds of experiments to evaluate the time
cost of secure trapdoor generation algorithm GenTrapdoor
under the same hash function settings in our BPMS and
make the comparison with MKSSMDO. Fig. 4(a) shows the
time cost of generating trapdoor with varying the number

TABLE 3
Complexity Comparison of our BPMSWith MKSSMDO [23]

Scheme MKSSMDO [23] BPMS

Computation cost of index jWi;jjðhþAZq þEG1
Þ þMZq þ ðjDj � jWi;jjÞRG1

jWi;jjðhþAZq þ EG1
Þ þMZq þ ðjWi;jj � 1ÞðCasþMG1

Þ þ
ðn� 1ÞðXORþ RG1

Þ þ nH

Computation cost of trapdoor jQjðAZq þ hÞ þ 3ðEG1
þMZq Þ jQjðAZq þ hÞ þ 3ðEG1

þMZq Þ þ ðjQj � 1ÞCasþ nH

Computation cost of search 3P þ ðjQj � 1ÞMG1
þMG2

3P þ ðn� 1ÞXORþMG2

Output size of index jDjjG1j njG1j
Output size of trapdoor 3jG1j 3jG1j

P is a bilinear pairing operation, RG1
is an operation of randomly generating an element in G1, h is a hash operation andH is a hash operation in the ABF. EG1

is
an exponentiation operation in group G1, AZq , MZq denote an addition operation and a multiplication operation in Zq, MG1

and MG2
denote a multiplication

operation in group G1 and G2. XOR denotes an exclusive OR operation and Cas denotes a cascade operation. jG1j denotes the element-size in G1.

Fig. 3. Performance of GenIndex. (a) The time cost of secure index gen-
eration for different number of keywords in a data file. (b) The time cost
of secure index generation for different number of data files with the fixed
number of keywords as 50 in a data file.

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2269



of search keywords and Fig. 4(b) depicts the time cost of
generating trapdoor with varying the size of D, where the
number of search keywords is fixed as 12. It should be noted
that the implementation of MKSSMDO only considers the
time taken by exponentiation in G1 while ignoring the time
cost of the hash operation h for each keyword. Here, we
have taken the time cost of all operations in trapdoor gener-
ation into consideration.

As shown in Fig. 4(a), the time cost of our BPMS linearly
increases with the number of search keywords that varies
from 10 to 80. That is because jQj addition operations in Zq,
jQj hash operations of h and jQj � 1 cascade operations are
required for each search in our BPMS. It can be seen that the
time cost slightly grows with the increasing number of hash
functions. The reason is that these hash functions would be
only used to compute the positions for obtaining the ele-
ments in the index. Compared with MKSSMDO, our BPMS
takes a little more time. That is because our BPMS requires
additional jQj � 1 cascade operations and n hash operations
of H to generate trapdoor. As illustrated in Fig. 4(b), we can
observe that the time costs of our BPMS and MKSSMDO are
nearly constant and do not vary with the size of D. This is
due to the fact that the time cost is only affected by jQj as
analyzed above. Moreover, the time cost of our BPMS is
very slow to grow with the increasing number of hash func-
tions. In general, the time cost of trapdoor generation in our
BPMS is almost the same with MKSSMDO.

7.4 Evaluation of Search Algorithm

We conduct two kinds of experiments to evaluate the time
cost of search algorithm search in our BPMS under the
same function settings in our BPMS and make the compari-
son with MKSSMDO. Fig. 5(a) shows the time cost of search
with varying the number of search keywords in a data file
and Fig. 5(b) illustrates the time cost of search with varying
the number of data files, where the number of search key-
words is fixed as 50.

As we can see from Fig. 5(a), the time cost of our BPMS is
not affected by the number of search words. It grows slowly
with the increasing number of hash functions. The reason is
that besides a multiplication and three pairing operations,
our BPMS also needs additional n� 1 XOR operations that
are related to the number of hash functions. Compared with
MKSSMDO, given a fixed number of search keywords, our
BPMS takes only a little more time when the number of
hash functions is respectively set to be 5, 10, 15. The reason

is that the time cost of XOR operations is affected by the
number of elements from the index. Obviously, the more
the number of hash functions is, the more time cost it takes.
As shown in Fig. 5(b), because the search operations of
MKSSMDO and our BPMS are implemented in a data file,
given the fixed number of search keywords as 50, it is obvi-
ous that the time cost of which takes is linear to the number
of data files. We also observe that the difference of time cost
between MKSSMDO and our BPMS in a data file is very
limited, which makes the total time cost be close with vary-
ing the number of data files.

7.5 Evaluation of Operations on the Blockchain

In our BPMS, the Search algorithm implemented by using
smart contract is run on the blockchain. To quantify the
throughput and average latency of the Search algorithm,
we set the search send rate of 100 transactions per
second (TPS). Fig. 6(a) shows the throughput of Searchwith
varying the number of search keywords in a data file and
Fig. 6(b) depicts the average latency of search with different
number of search keywords in a data file.

As shown in Fig. 6(a) and Fig. 6(b), we can observe that
the performance of Search in terms of throughput and aver-
age latency does not vary with the increasing number of
search keywords in a data file. That is because both the
throughput and average latency are mainly affected by the
used consensus algorithm. According to the analysis in Sec-
tion 7.4, the time cost of search in a data file is independent
of the number of search keywords, which means it is rela-
tively stable. Therefore, once the blockchain has been con-
figured, both the throughput and average latency will also
not be affected with varying the number of search keywords

Fig. 4. Performance of GenTrapdoor. (a) The time cost of trapdoor gen-
eration for different number of search keywords. (b) The time cost of
trapdoor generation for different size of dictionary D with the fixed num-
ber of search keywords as 12.

Fig. 5. Performance of Search. (a) The time cost of search with varying
the number of search keywords in a data file. (b) The time cost of search
for different number of data files with the fixed number of search key-
words as 50.

Fig. 6. Performance of Search on the blockchain. (a) The transaction
throughput for different number of search keywords. (b) The average
latency with different number of search keywords.

2270 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



in a data file. Moreover, as illustrated by Fig. 6(a), we can
see that the throughput of our BPMS slightly decreases with
the increasing number of hash functions. That is because
the more the number of hash functions is, the more the time
cost of search in a data file takes. For the same reason, the
average latency of our BPMS slightly increases with the
increasing number of hash functions, as shown in Fig. 6(b).
All these results also further demonstrate that the higher
the throughput is, the lower the average latency is.

8 CONCLUSION

In this paper, we have proposed BPMS, a blockchain-based
privacy-preserving multi-keyword search scheme, which
supports trustworthy search in multi-keyword multi-owner
setting. Our BPMS exploits the attribute Bloom filter to
guarantee query privacy in an efficient manner. By intro-
ducing IPFS in our BPMS, we can achieve more secure and
efficient storage, which improves the data availability and
practical feasibility. Theoretical analysis and experimental
evaluation demonstrate that our BPMS can enrich the func-
tionality and enhance the privacy and efficiency.

REFERENCES

[1] S. Gao et al., “TrPF: A trajectory privacy-preserving framework
for participatory sensing,” IEEE Trans. Inf. Forensics Security,
vol. 8, no. 6, pp. 874–887, Jun. 2013.

[2] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,”
IEEECommun. Surv. Tut., vol. 15, no. 2, pp. 843–859, Apr.–Jun. 2013.

[3] C. B€osch et al., “A survey of provably secure searchable
encryption,” ACM Comput. Surv., vol. 47, no. 2, pp. 1–51, 2015.

[4] R. Zhang, R. Xue, and L. Liu, “Searchable encryption for health-
care clouds: A survey,” IEEE Trans. Services Comput., vol. 11, no. 6,
pp. 978–996, Nov./Dec. 2018.

[5] L. Chen et al., “Blockchain based searchable encryption for elec-
tronic health record sharing,” Future Gener. Comput. Syst., vol. 95,
pp. 420–429, 2019.

[6] K. Fan et al., “MSIAP: A dynamic searchable encryption for pri-
vacy-protection on smart grid with cloud-edge-end,” IEEE Trans.
Cloud Comput., to be published, doi: 10.1109/TCC.2021.3134015.

[7] L. Wu et al., “Efficient and secure searchable encryption protocol
for cloud-based Internet of Things,” J. Parallel Distrib. Comput.,
vol. 111, pp. 152–161, 2018.

[8] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[9] R. Curtmola et al., “Searchable symmetric encryption: Improved
definitions and efficient constructions,” in Proc. 13th ACM Conf.
Comput. Commun. Secur., 2006, pp. 79–88.

[10] G. S. Poh et al., “Searchable symmetric encryption: Designs and
challenges,” ACM Comput. Surv., vol. 50, no. 3, pp. 1–37, 2017.

[11] D. Boneh et al., “Public key encryption with keyword search,” in
Proc. Int. Conf. Theory Appl. Cryptographic Techn., 2004, pp. 506–522.

[12] R. Chen et al., “Server-aided public key encryption with keyword
search,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 12,
pp. 2833–2842, Dec. 2016.

[13] B. Wang et al., “Inverted index based multi-keyword public-key
searchable encryption with strong privacy guarantee,” in Proc.
IEEE Conf. Comput. Commun., 2015, pp. 2092–2100.

[14] J. W. Byun et al., “Off-line keyword guessing attacks on recent
keyword search schemes over encrypted data,” in Proc. 3rd VLDB
Workshop Secure Data Manage., 2006, pp. 75–83.

[15] C. Wang et al., “Secure ranked keyword search over encrypted
cloud data,” in Proc. 30th Int. Conf. Distrib. Comput. Syst., 2010,
pp. 253–262.

[16] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient con-
junctive keyword searches over encrypted data,” in Proc. Int. Conf.
Inf. Commun. Secur., 2005, pp. 414–426.

[17] N. Cao et al., “Privacy-preserving multi-keyword ranked search
over encrypted cloud data,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 1, pp. 222–233, Jan. 2014.

[18] B. Wang et al., “Privacy-preserving multi-keyword fuzzy search
over encrypted data in the cloud,” in Proc. IEEE Conf. Comput.
Commun., 2014, pp. 2112–2120.

[19] H. Yin et al., “A query privacy-enhanced and secure search
scheme over encrypted data in cloud computing,” J. Comput. Syst.
Sci., vol. 90, pp. 14–27, 2017.

[20] P. Chaudhari and M. L. Das, “Privacy preserving searchable
encryption with fine-grained access control,” IEEE Trans. Cloud
Comput., vol. 9, no. 2, pp. 753–762, Apr.–Jun. 2021.

[21] W. Zhang et al., “Privacy preserving ranked multi-keyword
search for multiple data owners in cloud computing,” IEEE Trans.
Comput., vol. 65, no. 5, pp. 1566–1577, May 2016.

[22] Z. Guo et al., “Secure multi-keyword ranked search over
encrypted cloud data for multiple data owners,” J. Syst. Softw.,
vol. 137, pp. 380–395, 2018.

[23] H. Yin et al., “Secure conjunctive multi-keyword ranked search
over encrypted cloud data for multiple data owners,” Future
Gener. Comput. Syst., vol. 100, pp. 689–700, 2019.

[24] S. Gao et al., “T-pbft: An eigentrust-based practical byzantine fault
tolerance consensus algorithm,” China Commun., vol. 16, no. 12,
pp. 111–123, 2019.

[25] S. Gao et al., “Trustaccess: A trustworthy secure ciphertext-policy
and attribute hiding access control scheme based on blockchain,”
IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 5784–5798, Jun. 2020.

[26] S. Hu et al., “Searching an encrypted cloud meets blockchain:
A decentralized, reliable and fair realization,” in Proc. IEEE
INFOCOM, 2018, pp. 792–800.

[27] H. Li et al., “Blockchain-based searchable symmetric encryption
scheme,” Comput. Elect. Eng., vol. 73, pp. 32–45, 2019.

[28] S. Jiang et al., “Privacy-preserving and efficient multi-keyword
search over encrypted data on blockchain,” in Proc. IEEE Int. Conf.
Blockchain, 2019, pp. 405–410.

[29] C. Cai et al., “Enabling reliable keyword search in encrypted
decentralized storage with fairness,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 1, pp. 131–144, Jan./Feb. 2021.

[30] K. Yang et al., “An efficient and fine-grained Big Data access con-
trol scheme with privacy-preserving policy,” IEEE Internet Things
J., vol. 4, no. 2, pp. 563–571, Apr. 2016.

[31] J. Benet, “IPFS - content addressed, versioned, p2p file system
(draft 3),” 2014. [Online]. Available: https://raw.githubusercontent.
com/ipfs-inactive/papers/master/ipfs-cap2pfs/ipfs-p2p-file-
system.pdf

[32] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Tech. Rep.
2003/216, 2003. [Online]. Available: http://eprint.iacr.org/2003/
216/

[33] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword
search over-encrypted data,” in Proc. Int. Conf. Appl. Cryptogr.
Netw. Secur., 2004, pp. 31–45.

[34] D. Cash et al., “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. 33rd Annu. Int. Cryptol.
Conf., 2013, pp. 353–373.

[35] W. Sun et al., “Privacy-preserving multi-keyword text search in
the cloud supporting similarity-based ranking,” in Proc. 8th ACM
SIGSAC Symp. Inf. Comput. Commun. Secur., 2013, pp. 71–82.

[36] X. Ding, P. Liu, and H. Jin, “Privacy-preserving multi-keyword
top-k similarity search over encrypted data,” IEEE Trans. Depend-
able Secure Comput., vol. 16, no. 2, pp. 344–357, Mar./Apr. 2019.

[37] S. Tahir and M. Rajarajan, “Privacy-preserving searchable encryp-
tion framework for permissioned blockchain networks,” in Proc.
iThings GreenCom CPSCom SmartData, 2018, pp. 1628–1633.

[38] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[39] D. Boneh andM. Franklin, “Identity-based encryption from the weil
pairing,” inProc. 21st Annu. Int. Cryptol. Conf., 2001, pp. 213–229.

[40] K. S. McCurley, “The discrete logarithm problem,” in Proc. Sympo-
sia Appl. Math., 1990, pp. 49–74.

[41] D. Boneh, “The decision diffie-hellman problem,” in Proc. Int.
Algorithmic Number Theory Symp., 1998, pp. 48–63.

[42] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[43] Q. Zheng et al., “An innovative IPFS-based storage model for
blockchain,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell., 2018,
pp. 704–708.

GAO ETAL.: BPMS: BLOCKCHAIN-BASED PRIVACY-PRESERVING MULTI-KEYWORD SEARCH IN MULTI-OWNER SETTING 2271

http://dx.doi.org/10.1109/TCC.2021.3134015
https://raw.githubusercontent.com/ipfs-inactive/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://raw.githubusercontent.com/ipfs-inactive/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://raw.githubusercontent.com/ipfs-inactive/papers/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/
https://bitcoin.org/bitcoin.pdf


[44] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the XOR metric,” in Proc. Int. Work-
shop Peer-to-Peer Syst., 2002, pp. 53–65.

[45] M. Steichen et al., “Blockchain-based, decentralized access control
for IPFS,” in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE
Green Comput. Commun. (GreenCom) IEEE Cyber, Phys. Social Com-
put. IEEE Smart Data, 2018, pp. 1499–1506.

[46] S. Gao et al., “TrustWorker: A trustworthy and privacy-preserving
worker selection scheme for blockchain-based crowdsensing,”
IEEE Trans. Services Comput., to be published, doi: 10.1109/
TSC.2021.3103938.

[47] S. Gao et al., “A privacy-preserving identity authentication scheme
based on the blockchain,” Secur. Commun. Netw., vol. 2021, 2021,
Art. no. 9992353.

[48] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in Proc. Eur. Conf. Mach. Learn., 2004,
pp. 217–226.

[49] F. Pedregosa et al., “Scikit-learn: Machine learning in python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[50] A. De Caro and V. Iovino, “jPBC: Java pairing based cryptography,”
in Proc. IEEE Symp. Comput. Commun., 2011, pp. 850–855.

[51] E. Androulaki et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proc. 13th EuroSys Conf.,
2018, pp. 1–15.

[52] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014,
pp. 305–319.

[53] “Hyperledger Caliper.” Accessed: Sep. 2021. [Online]. Available:
https://github.com/hyperledger/caliper

Sheng Gao received the PhD degree in com-
puter science and technology from Xidian Univer-
sity, Xi’an, China, in 2014. He is now a professor
and the PhD supervisor with the School of Infor-
mation, Central University of Finance and Eco-
nomics. He has authored or coauthored more
than 5 books and published more than 50 papers
in refereed international journals and conferen-
ces, such as IEEE Transactions on Information
Forensics and Security, IEEE Transactions on
Vehicular Technology, IEEE Transactions on

Services Computing, and IEEE Transactions on Wireless Communica-
tions. His current research interests include blockchain, data security,
and privacy computing.

Yuqi Chen received the BE degree from the
School of Information Science and Technology
from University of International Relations, Beijing,
China, in 2020. Currently, she is working toward
the MS degree with the School of Information,
Central University of Finance and Economics.
Her current research focuses on searchable
encryption, privacy protection and blockchain.

Jianming Zhu received the PhD degree in com-
puter application technology from Xidian Univer-
sity, Xi’an, China, in 2004. He is working as a
professor with the School of Information, Central
University of Finance and Economics. From Sep-
tember 2008 to March 2009, he was a research
fellow with the University of Texas at Dallas, USA.
He has published more than 100 research papers
in refereed international journals and conferen-
ces. His research interests include wireless net-
work security, data privacy and blockchain.

Zhiyuan Sui received the bachelor’s degree in
mathematics form Shandong Jianzhu University,
Ji’nan, China in 2008, the master’s degree in com-
puter science from Xidian University, Xi’an, China
in 2011, and the PhD degree from Passau Univer-
sity, Germany in 2018. He is currently working as a
lecturer with the Central University of Finance and
Economics, Beijing, China. His research interests
include applied cryptography, privacy preservation,
and security in critical infrastructure.

Rui Zhang received the PhD degree in informa-
tion security from Beijing Jiaotong University, Bei-
jing, in 2011. She is currently an associate
researcher with the State Key Laboratory of Infor-
mation Security, Institute of Information Engineer-
ing, Chinese Academy of Sciences. Her research
interests include cloud data security, privacy
preservation, and security protocols.

Xindi Ma (Member, IEEE) received the BS
degree from the school of computer science and
technology, Xidian University in 2013 and the
PhD degree in computer science from Xidian Uni-
versity in 2018. He is now an associate professor
with the School of Cyber Engineering, Xidian Uni-
versity. His current research interests include pri-
vacy computing, recommender system and
machine learning with focus on security and pri-
vacy issues.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2272 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

http://dx.doi.org/10.1109/TSC.2021.3103938
http://dx.doi.org/10.1109/TSC.2021.3103938
https://github.com/hyperledger/caliper


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


