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Abstract

Recently, although state-of-the-art (SOTA) tools were designed and developed to analyze
the vulnerabilities of smart contracts on Ethereum, security incidents caused by these vul-
nerabilities are still widespread. This can be attributed to the fact that each tool has various
standards for judging the severity of vulnerabilities. More importantly, tools fail to identify
all the vulnerabilities accurately and comprehensively as the evolution of vulnerabilities.
To this end, we first propose a vulnerability assessment model to unify the vulnerabil-
ity measurement standards. Next, we design a static analysis tool called SmartFast, which
expresses the contract source code as a novel intermediate representation named SmartIR.
Using preset rules and taint tracking technology, SmartFast matches SmartIR to locate the
vulnerability code. Furthermore, SmartFast can recommend the optimization of the contract
code automatically. Finally, we implement a prototype of SmartFast with 25K lines of code
and compare it with 7 SOTA tools on three datasets (a total of 13,687 public contracts).
The results indicate that SmartFast is efficient (only took a few seconds per contract) and
robust (0.4% failure rate and resistance to the general code confusion methods). Besides,
compared with other tools, SmartFast can detect more kinds of vulnerabilities (119) with a
higher precision rate (98.43%) and a recall rate (85.12%), which confirms the conclusion of
the theoretical analysis in the paper.

Keywords Blockchain - Smart contracts - Solidity - Security vulnerability -
Formal static analysis

1 Introduction

As one of the core technologies of blockchain, smart contracts carry great economic value.
Once smart contracts have security vulnerabilities, malicious users may launch attacks by
leveraging the vulnerabilities to steal coins from users’ accounts. For example, in April
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2018, the $900 million market value of Beautychain’s token BEC fell to almost zero due
to a vulnerability in the contract code (Bocek and Stiller 2018); In May 2019, Binance
was hacked with more than 7,000 Bitcoins stolen. These frequent security incidents show
that it is necessary to minimize the vulnerabilities in smart contracts. The most effective
way is to formally analyze smart contracts to identify vulnerabilities and fix them before
deployment. While this observation is ubiquitous, only a handful of smart contract projects
(e.g., MakerDAO DappHub 2019) have been formally verified so far. Since the applications
of smart contracts are ubiquitous in Ethereum (Wood et al. 2014), this paper focuses on
achieving security analysis of Ethereum smart contracts.

State-of-the-Art (SOTA) Analysis Tools In Ethereum, most smart contracts are written in
Solidity, a high-level programming language, and then executed in the form of Ethereum
Virtual Machine (EVM) bytecode. Although some alternative programming languages (e.g.,
Vyper Team 2020, Bamboo Blockchain 2018, etc.) have been proposed, Solidity is still the
most popular language in Ethereum. The methods used in analysis tools of Ethereum smart
contracts can be roughly divided into dynamic analysis and static analysis.

Dynamic analysis refers to the use of techniques (e.g., theorem proving and fuzzy testing)
to discover potential security threats during contract execution. The tools based on theorem
proving (Grishchenko et al. 2018c; Hildenbrandt et al. 2018; Jiao et al. 2020) mainly use
F*s framework and K framework to describe the properties of the contract, and then use
theorem provers (e.g., Isabelle Nipkow et al. 2283) to determine whether its logic code is
flawed. However, most of these tools require users to provide specifications or invariants
manually, so they are difficult to achieve fully automatic analysis. The tools (Nguyen et al.
2020; Choi et al. 2021; He et al. 2019) leverage fuzzy testing to run contracts actually and
discover vulnerabilities with pre-defined oracles. However, the oracles in these tools are
challenging to define, and can only verify the limited vulnerabilities.

Compared with the above methods, static analysis is more comprehensive and efficient in
implementing contract verification. According to different input types, static analysis tools
can be divided into two categories that use EVM bytecode (e.g., Luu et al. 2016; Tsankov
et al. 2018) and Solidity code (e.g., Tikhomirov et al. 2018; Kalra et al. 2018; Feist et al.
2019; Lu et al. 2019) as input. The tools (Luu et al. 2016; Krupp and Rossow 2018; Perme-
nev et al. 2020; Frank et al. 2020; Software 2020) employ symbolic execution to build the
Control Flow Graph (CFG) of the contract from the EVM bytecode, and then execute the
predefined logic rules to identify vulnerabilities. Nevertheless, the cumbersome execution
process of CFG and the unreadable bytecodes makes detection inefficient and rules diffi-
cult to formulate. Moreover, tools (Tsankov et al. 2018; Schneidewind et al. 2020; Chen
et al. 2020) construct an intermediate representation (IR) by extracting the semantics of
the EVM bytecode, and match the vulnerable instructions with the predefined security pat-
terns. Since EVM bytecodes lack a lot of Solidity semantics, it is prone to false positives
and false negatives when using these tools. For instance, most of the incorrect detection in
Securify (Tsankov et al. 2018) are caused by semantic inconsistency between IR and Solid-
ity code. Moreover, programmers will develop and revise contracts directly on the Solidity
source code. Thus, analysis based on Solidity code is more efficient than EVM bytecode.
As demonstrated by Durieux et al. (2020), Slither (Feist et al. 2019) and SmartCheck
(Tikhomirov et al. 2018), as the two representatives of the tools based on Solidity analy-
sis, comprehensively outperformed those based on EVM bytecode (e.g., Oyente Luu et al.
2016). They all abstract Solidity as IR, and utilize pattern matching to detect vulnerabilities.
However, the IR used in Slither lacks some primitive semantics, such as var variables. Sim-
ilarly, IR restrictions make tools such as SmartCheck (Tikhomirov et al. 2018) difficult to
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formulate vulnerability rules, resulting in a lot of false negatives and false positives. Thus,
IRs and matching methods of these tools need to be improved.

Key Challenges To sum up, we design an advanced formal static analysis tool named
SmartFast to address the following challenges.

(i

(ii)

(iii)

(iv)

Detect more kinds of vulnerabilities. To the best of our knowledge, Slither (Feist et al.
2019) can detect 71 kinds of vulnerabilities. It can find the most vulnerabilities among
SOTA tools. Nonetheless, by sorting out the vulnerabilities that have been reported so
far, we found that there are at least 130 kinds of vulnerabilities in smart contracts.
General severity assessment mechanism. The severity of the same vulnerability
varies from tools. For instance, a vulnerability called unchecked-lowlevel is classi-
fied as high-severity in SmartCheck (Tikhomirov et al. 2018), while it is classified as
medium-severity in Slither (Feist et al. 2019). The inconsistency of the vulnerability
severity evaluation mechanism in different tools will confuse the Ethereum security
managers to deploy inappropriate security policies. In order to circumvent this prob-
lem, we propose a unified severity assessment mechanism in terms of risk degrees and
utilization difficulties.

More accurate and robust intermediate representation. Most of the tools analyze the
vulnerabilities based on their respective IRs. Since most IRs (e.g., SlithIR) are difficult
to comprehensively and accurately express the original contract semantics, it will lead
to false positives and false negatives. Moreover, most IRs based on the abstract syntax
tree (AST), generated by contract compilation. However, AST will be lost when the
contract cannot be compiled. As a result, IRs cannot be generated correctly. In order to
address this issue, SmartFast parses the source code directly so that it can standardize
the contract code well. More importantly, it can analyze smart contracts even if they
are compiled improperly.

More accurate and efficient pattern matching. In the current security analysis tools
(especially static analysis tools), the effect of tool detection is closely related to the
accuracy of the matching rules. On the one hand, the existing tools have limited
and inaccurate security rules, which prevent them from comprehensively discover-
ing vulnerabilities. On the other hand, the complex matching algorithm will make the
detection inefficient. For example, Securify (Tsankov et al. 2018) takes about 4 min-
utes to analyze a 121KB contract, which is 24 times that of Slither (Feist et al. 2019). In
contrast, SmartFast adopts precise matching rules and efficient matching algorithms
to analyze a contract in seconds.

Fully automated contract analysis. In the tools developed by Grishchenko et al.
(2018c) and Hildenbrandt et al. (2018), manual participation reduces the efficiency
of contract analysis and causes inconvenience to users. Instead, SmartFast leverages
the pre-defined patterns and automation engine to realize the fully automated contract
analysis, which not only saves time and assets, but also alleviates human errors and
malicious attacks.

Contributions The primary contribution of this paper is the design, implementation and
evaluation of SmartFast. More specifically, we make the following contributions:

Universal vulnerability severity assessment. We propose a unified vulnerability assess-
ment model (cf. Section 3). This model divides the severity of vulnerabilities into five
levels: High, Medium, Low, Informational, Optimization, in terms of hazard degree and
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utilization difficulty. In Section 3, we elaborate on its evaluation criteria, and leverage
it to evaluate 136 kinds of vulnerabilities detected by 8 tools.

—  Strong vulnerability discovery capability. We design and develop SmartFast (cf.
Section 4), which is mainly composed of SmartIR and pattern verification. SmartIR
provides three forms, namely XML, IR, and IR-SSA, with a more accurate and robust
expression of contract semantics than SOTA tools. Based on SmartIR, we build a
corresponding pattern matching framework to achieve efficient and accurate security
analysis on smart contracts.

—  Superior detection performance. We evaluate the accuracy, efficiency, and robustness
of SmartFast on three datasets (13,687 contracts in total) (cf. Section 6). Compared
with SOTA tools (e.g., Slither and SmartCheck), SmartFast can detect contract vulner-
abilities more accurately (119 kinds, 98.43% precision rate, and 85.12% recall rate),
efficiently (11.5 seconds per 121KB contract), and robustly (0.4% failed rate and
resistance to the general code confusion methods). Moreover, it can discover the vul-
nerability codes accurately in major vulnerability incident contracts and investigate that
94% of the contracts in the Ethereum dataset can be optimized. In addition, we explore
the deep insights of the correctness and effectiveness of SmartFast from the theoretical
level (cf. Section 7).

2 Preliminaries and Motivating Examples

This section details the basic knowledge of SmartFast and 13 kinds of representative
contract vulnerabilities.

2.1 Smart Contracts in Ethereum

Smart contracts are codes running on the blockchain, known as the “autonomous agents” of
the blockchain. When a user creates a contract A successfully, the blockchain will generate a
corresponding identification address « 4 (called contract address) for the contract. Moreover,
the contract holds a certain amount of virtual currency Ether (called balance) and associates
it with executable code. Contract code can operate on variables like traditional imperative
programs. In comparison, the execution of the contract requires gas, which can be converted
with Ether and sent to the miners as a reward. Ethereum virtual machine (EVM) bytecode,
as the underlying code of Ethereum contract operation, is a stack-based language. Users
use high-level programming languages (e.g., Solidity Foundation 2020) to develop smart
contracts. Then, these contracts are compiled into EVM bytecode by compilers such as
Solc. In order to invoke the contract A at address «p, the user needs to send transaction
T = (ap,a4, E,G, D,...) to contract address o4, where E, D, G represent the input
amount, call parameters, and execution cost, respectively.

2.2 Intermediate Representation and Pattern Detection

Compared with contract source code, Intermediate Representation (IR) is a closer repre-
sentation to executable code. It is generated by a converter based on high-level languages
such as Solidity. Since the complexity of the contract Solidity code, it is infeasible to con-
duct static analysis on it directly. To this end, IRs make static analysis algorithms concise
and efficient. For instance, based on Extensible Markup Language (XML), the correspond-
ing source code can be expressed by defining tag types. It simplifies the analysis effort and

@ Springer



Empir Software Eng (2022) 27:197 Page 50f52 197

makes the contract logic clearer. Similarly, languages such as Scilla (Sergey et al. 2018) and
LLVM (Kalra et al. 2018) can be available as IRs.

Static Single Assignment (SSA) is a unique conversion format for IR that is frequently
used in static analysis. Figure 1 shows an example of converting IR to SSA. In SSA, when
a state variable x is assigned, it is expressed as x| and x;. In other words, SSA requires that
each variable can only be assigned once. This makes the transitive relation between variables
more evident. Thus, SSA can help us build data dependencies effectively. Moreover, there
is an ambiguity when IR faces multiple paths. For example, in the last procedure of Fig. 1,
it cannot be determined whether y3 refers to y; or y». If y3 refers to yq, then z; = x2 + y1;
otherwise, then z; = x2 + y». To eliminate the uncertainty, SSA introduces a statement ¢ to
select the corresponding variable version according to the running path. Then the obtained
variable is defined as y3 = ¢(y1, ¥2). In other words, ¢ can indicate that a variable has
multiple potential definitions. Also, at the beginning of the function, the state variable x is
set to its initial value that can be updated by executing any function. Therefore, a statement
¢ needs to be placed at the function entrance to select the version of each state variable read
by the function.

Pattern Detection Based on IRs, detection algorithms (called patterns) are designed to
identify vulnerable codes. It usually employs brute force search and taint analysis to ana-
lyze IRs of contracts. For example, XML Path Language (XPath) is the detection method
of XML. It traverses the elements and attributes in XML to match the desired informa-
tion. Furthermore, we need to combine the features of IR and vulnerabilities to develop
corresponding detection rules (security patterns). Then vulnerabilities can be verified by
matching the corresponding patterns in the IRs.

| ———~Function Entry—————>¢

X X1:¢(X)
X< x+1 Xy < x; +1
x>4? x, >4?

Yes No /\
y=x-4 y:x2 SSA Vo=Xy—4| |y =x,%x,
z=x+y V3 :¢(J’1a)’2)
z=x-y 2235+

2o =% T

Fig.1 Example of IR to SSA conversion
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2.3 Adversary Tools

In this paper, we will compare the various performance (e.g., accuracy, efficiency, etc.)
between SmartFast and the following tools having open-source code. (i) Oyente (Luu et al.
2016) developed by Melonport combines with symbolic execution technology. It builds the
CFG of the contract from EVM bytecodes and uses pre-defined logical rules to find poten-
tial problems in the contract. (i) Osiris (Torres et al. 2018), improved based on Oyente,
expends the detection of integer bugs. (i) Mythril (Software 2020) developed by Consen-
Sys, incorporates concept analysis, taint analysis, and control flow inspection. (iv) Securify
(Tsankov et al. 2018) developed by SRI System Laboratory (ETH Zurich), uses semantic
facts and predefined patterns based on the bytecodes to identify contract vulnerabilities. (v)
Securify2.0 (SRI Lab 2020) developed by ETHZurich, takes the Solidity source code as
input. It improves IR based on Securify so that it can support more vulnerabilities detection.
(vi) Slither (Feist et al. 2019) is a static analysis framework developed by Trail of Bits. It uses
SlithIR and pre-defined rules to match the problematic codes. (vii) SmartCheck (Tikhomirov
et al. 2018) developed by SmartDec, determines contract vulnerabilities is similar to Slither.

2.4 Motivating Examples

In this section, we combine the contract example code to explain the vulnerabilities in terms
of occurrence principle, impact effect, and repair countermeasures.

Reentrancy with Ether (reentrancy-eth) Reentrancy vulnerability is a classical problem,
which leads to the asset loss of nearly $60 million in 2016 (Sergey and Hobor 2017). This
vulnerability refers to reentry with the following features: reentrant call, Ether sending, and
reading the variables before writing. An attack scenario is depicted in Listings 1 and 2.
Bob first constructs a contract Attack, and then he performs the function “withdraw()” by
invoking the attack(), which will trigger the fallback function. By this means, Bob imple-
ments multiple calls to withdraw(). Since the userBalance hadn’t changed before the call in
withdraw(), Bob obtained more than the amount he deposited into the contract. It should be
noted that the Ether sent cannot be zero. Otherwise, it will cause false positives. Improve-
ments to contracts: put userBalance[msg.sender]=0 before the call function. That is, the
contracts should employ the check-effects-interactions pattern to avoid this vulnerability.

Right-to-Left-Override (rtlo) This vulnerability can manipulate the logic of the contract by
using a right-to-left-override character (U+202E). As shown in Listing 3, the contract Token
uses the right-to-left-override character when invoking _withdraw() function. As a result,
the fee is incorrectly sent to msg.sender, and the token is sent to the owner. Improvements
to contracts: Remove the special control characters (i.e., U+202E) in the contract.

}

1 contract PullPayment {

2 mapping (address => uint) userBalances;

3 function withdraw () {

4 Reenter the func on

5 if (! (msg.sender.call.value (userBalance[msg.sender]) ())){ throw; }
6 userBalance [msg.sender] = 0;

7

8

}

Listing 1 The sample of reentrancy-eth
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Listing 2 Attack contract contract Attack {

PullPayment object;
function attack () payable {
object.withdraw(l ether);

function () public payable {
object.withdraw (1l ether);

1
2
3
4
5 }
6
7
8 }
9

}

Lock Account Assets (locked-ether) As shown in Listing 4, since the recharge() has a
tag “payable” (i.e., supports receiving remittance), everyone can transfer amounts to the
contract Locked through this function. However, Locked doesn’t provide any functions
with withdrawal power. Thus, every Ether sent to Locked will be lost. Improvements to
contracts: Remove the payable attribute or add a function “withdraw” in the contract.

Transaction Origin Address (tx-origin) As the underlying property of the transaction, the
origin address may be manipulated by the attacker, so that it is inappropriate to be used
for authentication. An attack scenario is depicted in Listing 5. Bob is the owner of the
contract TxOrigin. Bob calls Eve’s contract. Eve’s contract invokes TxOrigin and bypasses
the tx.origin protection. Thus, the modifier “verify()” will lose its verification effect, making
the contract abnormal. Improvements to contracts: Don’t use tx.origin for authentication.

Wrong Shift Parameters (shift-parameter-mixup) The opcode shr(a,b) indicates that b is
shifted right by a bits. However, the parameter errors for this opcode will get unexpected
results. As shown in Listing 6, the shift statement right-shifts the constant 8 by b bits due
to the opposite position of the parameters. Then, the function “f()” returns an incorrect
value, which may cause unexpected issues. Improvements to contracts: Swap the order of
parameters to shr(8,b).

Shadowed Built-in Elements (shadowing-builtin) Solidity enables the shadowing of most
elements in the contract, such as variables and functions. The shadowed elements may not
be invoked as the user wishes and cause the wrong results. This vulnerability indicates
that the names of the elements (e.g., state variables and custom functions) conflict with the
built-in symbols (e.g., “assert”, “now”, “sha3”’). Moreover, “try”, “case” and other reserved
keywords are not recommended when defining the element name. Listing 7 shows an exam-
ple of this vulnerability. Since the state variable and the time variable “now” have the same
name, the current time will not be obtained when function “get_random()” is invoked. More-
over, the built-in symbol “require” is hidden by the function defined by the contract, which
may cause the invalid authentication in get_random(). In short, these shadowed built-in ele-
ments lead to unexpected results. Improvements to contracts: Modify or delete declared
elements such as “now” and “require(bool)”.

Listing3 The sample of rtlo 1 contract Token {
2 address payable o; owner

3 mapping (address => uint) tokens;

4 function withdraw() public {

5 uint amount = tokens[msg.sender];

6 address payable d = msg.sender;

7 tokens[msg.sender] = 0;

8 _withdraw(/+owner=/o ,d /+destinatio
9 aluex/, amount);

10 }
11
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Listing4 The sample of
locked-ether

Listing 5 The sample of tx-origin

contract Locked{
mapping (address => uint) tokens;
function recharge() payable public({
tokens [msg.sender] += msg.value;

}

DU W

contract TxOrigin {
address owner msg.sender;
modifier verify () {
require (tx.origin == owner);

—r

}

N O U W N

Listing 6 The sample of 1 contract C {
shift-parameter-mixup 2 function f () internal returns (uint b) {
3 assembly {
4 b := shr (b, 8)
5 }
6 }
7}
Listing7 The sample of 1 contract ShadowedSC B
shadowing-builtin 2 uint now; //s . built-in symbols
3 function get_. random() private returns (uint) {
4 require (owner == msg.sender); //invalidation
5 return now + 259200; //unexpected result
6 }
7 function require (bool condition) public {
8 ..
9 }
10 1}

1 function transfer (bytes
_gas,uint256 _nonce)
bytes32 txid
_gas, _nonce),

(NN

address from_address
, _gasPrice, _nonce);
balances[from_address]
balances|[_to] += _value;
signatureUsed[txid] true;

[0 BRI IR}

Listing 8 The sample of signature-malleability

@ Springer
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public returns
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contract Timestamp{
uint time_now = 1577808000;
address private receiver;
function frangibility () public {
require (block.timestamp > time_now);
uint 1_ther = 10000000000000000000;
receiver = msg.sender;
require (receiver.call.value(1l_ther) .gas(7777) (""));
}
}

QOO U A WN -

—

Listing9 The samples of timestamp, low-level-calls, private-not-hidedata, etc

Non-compliant Signature (signature-malleability) The use of signatures should follow
the norms. Otherwise, it will cause unexpected impacts. Listing 8 shows an incorrect signa-
ture example. That is, keccak256 contains the existent signature “_signature”. The attackers
can modify the elements r\s\v in _signature to construct a new valid signature, which can get
a valid address from the function “recoverTransferPreSigned”. As _signature changes, the
verification (line 3) will be passed, thereby allowing the attackers to get additional balance.
Improvements to contracts: Remove _signature in keccak256.

Timestamp Dependency (timestamp) The object “block” contains many attributes (e.g.,
timestamp and block number), which can be manipulated by miners and nodes. As shown
in Listing 9, attackers can control the block.timestamp to pass the verification (line 5) by
conspiring with miners or nodes. Also, the contract owner confuses users with complex
numbers (foo-many-digits) and guided names, where the variable 1_ether is actually 10
ether. Furthermore, the function “frangibility()” uses this variable and the calls with poor
safety (low-level-calls), which may cause security issues such as reentrancy-eth. In addition,
although the visibility of the state variable “receiver” is declared private, miners can still be
viewed in advance through the transaction (private-not-hidedata). Improvements to con-
tracts: Use the scientific notation to modify the statement to 10_ether = 10**19. Moreover,
the calls with low-level security and block attributes such as timestamp should be avoided.
Also, it is recommended to use private data in the ciphertext.

Useless Code (code-no-effects) The execution of each operation in the contract will con-
sume the specified gas. However, as shown in Fig. 2, useless_variable is clarified and
without any use, which makes the gas of the function “bad()” wasted. Moreover, state vari-
ables consume more gas than local variables, so frequent manipulation of state_variable
in the loop consumes additional gas (costly-operations-loop). Improvements to con-
tracts: As shown in Fig. 2, the useless variable was removed. Also, the local variable
“tmp_variable” was updated and then assigned to the state variable.

1 uint state_variable = 0;
2 function bad() external ({

uint state_variable = 0;
function bad() external {

3 [pint useless_variable —> " uint tmp variable = state variable;
4 Replace for (uint i=0; i < 100; i++){

5 ——— tmp variable++;

P e e N I

7} L+ tmp variable; |

Fig.2 The samples of code-no-effects and costly-operations-loop

@ Springer



197 Page 10 of 52 Empir Software Eng (2022) 27:197

3 Vulnerability Assessment Model

By explaining the above 13 vulnerabilities, it is known that these vulnerabilities have a vari-
ety of impacts and exploitability, thus giving the contract varying security. It is necessary
to give priority to repairing vulnerabilities with greater severity. For example, in a limited
time, repairing a vulnerability with more significant severity can quickly improve the secu-
rity of the contract. However, the SOTA tools (e.g., Slither and SmartCheck) didn’t give a
well-founded assessment mechanism for the severity of the vulnerability. To this end, we
propose a vulnerability assessment model in this section. Furthermore, this section summa-
rizes and compares the kinds of vulnerabilities detected by different SOTA tools based on
this assessment model.

3.1 Vulnerability Assessment Method

Combined with CVSS2.0 (Common Vulnerability Scoring System), the vulnerability sever-
ity of smart contract can be rated as High, Medium, and Low in terms of risk degrees and
utilization difficulties. The detailed partitioning is shown in Fig. 3. The risk degree refers to
the impact of vulnerability on the resources such as blockchain system and users. According
to the three impact dimensions of confidentiality (C), integrity (I), and availability (A), this
paper divides the risk degree into High, Medium, Low, Informational (Info) and Optimiza-
tion (Opt). Specifically, High risk refers to the severe and almost irreversible harm, i.e., the
vulnerability can seriously affect the CIA of smart contracts, and cause a lot of economic
losses and data confusion to the contract business system. Including but not limited to: (i) the
large assets being stolen or frozen; (ii) the core contract business cannot operate normally,
such as denial of service; (iii) the core business logic of contracts is arbitrarily tampered with
or bypassed, such as transfer, charging, and accounting; (iv) the fairness design of contracts
is invalid, such as electronic voting, lottery, and auction.

Medium risk refers to a slight impact on the CIA of smart contracts, and may cause
certain harm to the contract business system, such as little economic losses. Including but
not limited to: (i) some assets being stolen or frozen; (ii) the non-core business logic of
contracts is destroyed; (iii) the non-core business verification of contracts is bypassed; (iv)
the contracts trigger error events or adopt non-standard interfaces, resulting in loss of the
external system.

Low risk refers to a weak impact on the contract business system. Including but not
limited to: (i) the stability of contract operation is affected, such as the abnormal increase
in call failure rate and resource consumption; (ii) the contracts adopt substandard interfaces

Risk . . . o
Utilization High | Medium| Low | Informational | Optimization
Exactly g ed
Probably g ed
Possibly ed

Fig.3 Vulnerability assessment model
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or their implementation, which affects the security and compatibility of interfaces; (jii) the
contracts can trigger false events with few losses.

Info risk refers to hardly substantial harm to the contract business system and reminds
contract developers that the contract code is prone to errors. Thus, the contract owners
should develop the contracts following the specifications. Including but not limited to: (i)
the sensitive function calls such as delegatecall; (ii) the precautions required by the security
development specifications, such as variables and functions updated in version 0.5.0.

Opt risk refers to the improvement of the contracts, which can make the contract more
efficient, readable, and less gas consumption. Including but not limited to: (i) remove use-
less operations and reduce operating overhead; (ii) optimize algorithm code to improve the
running speed and security.

The utilization difficulty refers to the possibility of vulnerability occurrence. According
to the three dimensions of attack cost (e.g., money, time, and technology), utilization con-
dition (i.e., the difficulty of attack utilization), and trigger probability (e.g., vulnerabilities
can only be triggered by a few users), this paper divides it into exactly, probably, and pos-
sibly. Generally, exactly utilization requires an inferior cost, and the vulnerabilities can be
stably triggered without a special threshold. Including but not limited to: (i) easy to invoke;
(i) need few costs; (iii) hold few assets.

Probably utilization requires a certain cost and utilization conditions, and the vulnerabil-
ities are not easy to trigger. Including but not limited to: (i) pay a certain cost but less than
attack proceeds; (ii) require attackers to achieve certain normal conditions, such as collusion
with miners or outbound nodes; (iii) cooperate with known attacks in smart contracts, such
as attacking other on-chain Oracle contracts.

Possibly utilization requires expensive costs and strict utilization conditions, and the vul-
nerabilities are more difficult to trigger. Including but not limited to: (i) pay the cost that
more than the attack proceeds; (ii) require the attackers to meet low-frequency conditions,
such as belonging to a few critical accounts, and constructing a difficult specific signature.

3.2 Examples of Vulnerability Assessment

The model is used to assess the vulnerability examples in Section 2.4, so as to further illus-
trate the details of the model. Table 1 details the assessment results, indicating that these
vulnerabilities have different risk degrees and utilization difficulties (i.e., there are 13 com-
binations). Thus, they are given various severity. Specifically, the rtlo vulnerability can
destroy the core business logic and the fair design (High risk); it is well-characterized and
can be performed deterministically (exactly utilization) after the contract deployment.

The reentrancy-eth vulnerability can cause massive assets overspent or stolen (High);
some conditions are required to trigger this vulnerability (probably). For instance, complet-
ing the attack requires auxiliary contracts.

The locked-ether vulnerability can make little assets be lost or frozen (Medium); it can
be triggered stably after contract deployment (exactly).

The tx-origin vulnerability can cause the non-core business verification to be bypassed
without direct economic losses (Medium); it requires a combination of ancillary contracts
to obtain transactions from the verified party (probably).

Similar to locked-ether, the shift-parameter-mixup vulnerability can destroy the non-core
business logic (Medium). Nonetheless, it requires that users are unclear about the parameters
of shr(), thus giving it an inferior trigger probability (possibly).
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Table 1 The severity details of vulnerability examples supported by SmartFast

Vulnerability Description Risk Utilization ~ Severity

rtlo Right-To-Left-Override control High exactly High
character is used.

reentrancy-eth Ether stolen illegally by re-entering High probably High
functions such as calls.

locked-ether The contract has a payment function Medium  exactly Medium
but without withdrawal capacity.

tx-origin Verification based on tx.origin may be Medium  probably Medium
bypassed.

shift-parameter-mixup ~ The parameter errors of shift operation Medium  possibly Low
cause the opposite results.

shadowing-builtin The names of elements (e.g., state variables) Low exactly Low
conflict with the built-in symbols.

timestamp Miners or nodes can manipulate Low probably Low
block.timestamp to achieve their purpose.

signature-malleability ~ The signature to be verified contains an Low possibly Low
existing signature.

low-level-calls Low-level functions such as call and Info exactly Info
delegatecall are used in the contract.

too-many-digits Complex number symbols will confuse Info probably Info
contract users.

private-not-hidedata Private visibility doesn’t guarantee data Info possibly Info
confidentiality.

code-no-effects The useless code will increase gas Opt exactly Opt

consumption during running.
costly-operations-loop  Redundant operations in the loop will Opt probably Opt
waste resources such as gas.

The shadowing-builtin vulnerability can introduce security risks such as unexpected
results and verification failure, so as to affect the stability of the contract operation (Low);
it is triggered by executing the vulnerability code after the contract deployment (exactly).

The timestamp vulnerability can introduce security risks such as verification failure and
random number utilization (Low); it requires attackers to collude with miners or block nodes
(probably).

The signature-malleability vulnerability can cause a signature replay attack that affects
the stability of contract operation (Low). However, the eligible signature is difficult to be
constructed and exploit (possibly).

The low-level-calls vulnerability is prone to cause contract errors, so it is necessary to
focus on the use of these functions (/nfo); it can be invoked by executing the vulnerable
code (exactly).

The too-many-digits vulnerability can make users challenging to read the contracts, and
inaccurate variable names will mislead them (Info); it requires users to misunderstand the
semantic information of the variable, thus giving it a weak trigger probability (probably).

The private-not-hidedata vulnerability can result in the disclosure of private data, thus
reminding us that private content should be stored in ciphertext (Info); it requires attackers to
meet the specific identity restrictions and combine with miners to get information (possibly).
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The code-no-effects vulnerability will cause useless gas consumption, which can be fur-
ther optimized for user convenience (Opt); it can be improved after the contract development
(exactly).

Similar to code-no-effects, the costly-operations-loop vulnerability can be further opti-
mized to reduce the consumed gas (Opt); it depends on the number of loops, thus giving it
a certain trigger probability (probably).

The above 13 kinds of vulnerabilities cover all combinations of risk degree and utiliza-
tion difficulties. Thus, the assessment model describes the severity of vulnerabilities in a
detailed and clear manner, which can help users understand the security of the contract. In
addition, we have collected 136 kinds of vulnerabilities so far, and the complete assessment
results are shown in Table 2.! Among them, the number of the vulnerability severity is dis-
tributed as High (28), Medium (41), Low (26), Info (27), and Opt (14). Although half of the
vulnerabilities with weak severity (i.e., Low, Info, and Opt), it is still necessary to detect
them considering the comprehensive requirements, which can help users develop secure
and specification-compliant contracts. Moreover, since vulnerabilities such as redundant-
fallback refer to multiple scenarios, they have multiple levels of severity. For example, the
visibility vulnerability indicates that errors are induced by function visibility. That is, the
default function visibility (i.e., public) tends to cause critical functions to be exploited by
attackers (Info), so these functions need to be concerned. However, the version 0.5.0 of
Solidity has explicit requirements for function visibility, and functions without marked vis-
ibility will result in a compilation failure (High). In conclusion, the assessment results are
detailed and comprehensive.

It is noted that some vulnerabilities are related in Table 2. For instance, suicidal
and arbitrary-send vulnerabilities have similar principles (i.e., permission issues). Also,
reentrancy-no-eth is a variant of reentrancy-eth. Toward exploring the association between
the vulnerabilities, we classified them into 14 categories, such as Access Control and Arith-
metic, according to the their characteristics (e.g., call mode, variable type, risk degree).
Table 3 details the vulnerability categories and their vulnerability composition. For exam-
ple, the reentrancy category consists of 7 vulnerabilities such as reentrancy-eth. It has holds
the following five features: reentrant function type (i.e., send\transfer function with a limit
of 2300 gas, reentrant call function such as low_level_call without gas restriction), Ether
sending, reading data before invoking the function, changing data after invoking the func-
tion, and triggering event after invoking the function. Moreover, each category includes
vulnerabilities with multiple levels of severity. For example, the severity of the access con-
trol category is distributed as High (5), Medium (2), Low (3), and Info (1). In the real world,
vulnerabilities with clear severity can allow people to understand contract security better,
while convenient for repairing the vulnerabilities. To this end, this paper conducts detection
and comparison around the 136 kinds of vulnerabilities listed in Table 2.

3.3 Performance of the SOTA Tools in Detecting Vulnerabilities

In order to evaluate the ability of SOTA tools to detect vulnerabilities, we compare the
situation of vulnerabilities detected by SmartFast and tools such as Slither (described in
Section 2.3) based on the above vulnerability severity. The vulnerabilities detected by each
tool are summarized in Table 4. From the table, the same vulnerability may be detected

IThe vulnerabilities are detailed in https:/github.com/SmartContractTools/SmartFast/blob/main/
VulnerabilityDescription.xIsx.
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Table 3 The details of vulnerability (security pattern) categories. Among them, the vulnerability number

refers to Table 2

Category

Description

Vulnerability number

Access Control

Arithmetic

Block parameter
dependence

Denial of service
Front running
Reentrancy
Unchecked calls/
parameters

Infrastructure

errors

Dangerous variables/

attributes

Deliberate violation

Compile and

runtime errors

Duplicate names

Optimized

operations

Since objects (such as contracts and functions)
hold unrestricted permissions, attackers can
illegal invoke them.

Inconsistent behavior due to arithmetical errors
such as the integer overflow and underflow.

Using block-related variables that miners can
manipulate effortlessly.

The contract is overwhelmed with time-
consuming computations.

Two dependent transactions that invoke the
same contract are included in one block.

The calls of reentrant functions make
contracts operate in unexpected ways.

Ignore the check for the calls, including the
return value and their parameters.

Inconsistent behavior due to errors of

infrastructure (e.g., compiler, library function).

Inconsistent behavior due to dangerous use of
variables or their attributes (e.g., type and
visibility).

Inconsistent behavior due to the intentional

violation of development specification.

Inconsistent behavior due to compilation

and operation errors.

Inconsistent behavior due to duplicate names
(e.g., variable, function, and contract).

Operations can be optimized to improve
running efficiency and reduce running

gas, etc.

8,11,13,18,27,54,
60,82,84,95,113

48,55,62-67,83

21,8091

22,81,93

23-24,26,49

19,52,89-90,114-116

15-16,25,56-57,74,

88,92,103-104,112

1,5,20,31,51,70,86

2,43,79,96-98,102,
110,122

6,9-10,30,32-42,
45-46,58-59,75,94,
100-101,105,118-120

3,14,17,28-29,47,50,53,
61,68-69, 76-78,85,99,
106-109,111,121

4,7,44,71-73,87,117

12,123-136

Unknown Unknows Vulnerabilities not identified above. -

by multiple tools. For instance, tools such as Securify2.0 and Oyente can detect timestamp
vulnerabilities (No. 91). Also, this table demonstrates the number of vulnerabilities detected
by the tools at each severity. The number of vulnerabilities detected by pattern matching-
based tools such as Slither and SmartCheck is more than that of symbolic execution-based
tools such as Oyente (71 > 44 > 8). It can be attributed to the flexible usage of IRs
and the convenient formulation of security patterns in pattern matching. Besides, tools such
as Slither can identify vulnerabilities with Info and Opt severity, which can help contract
developers to further improve contracts. In total, SmartFast can detect not only 22 High-risk
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vulnerabilities, 34 Medium-risk vulnerabilities, and 24 Low-risk vulnerabilities, but also 24
Info and 14 Opt problems, which are the most in each severity level.

Remark 1 (Completeness of patterns) Compared with contract detection tools such as
Slither and SmartCheck, SmartFast can detect more kinds of vulnerabilities and provide a
more complete optimization direction. In other words, SmartFast can analyze the contract
security comprehensively and assist users in developing secure smart contracts.

4 Design of SmartFast
In this section, we describe the main components of SmartFast in details.
4.1 Overview

Figure 4 shows the workflow of SmartFast, which can be divided into four stages.

— Information extraction stage. In this stage, semantic information such as the code exe-
cution sequence of the contract is extracted to construct feature maps such as program
control flow graphs.

— Language conversion stage. This stage combines SmartIR’s conversion syntax to for-
mally describe the obtained feature maps, and finally obtains three forms of SmartIR in
XMLAIR\IR-SSA forms.

— Module analysis stage. Based on SmartIR, this stage summarizes information such
as data dependencies and numerical operations, which can be invoked directly
in the security patterns. For instance, if modifier “isowner()” wants to determine
whether the owner is related to msg.sender in a security pattern, it can invoke
data_denpendence(owner,msg.sender) directly. Thus, this reduces a lot of repetitive
operations during security patterns development and pattern matching, making the
detection more efficient.

— Pattern detection stage. In the light of SmartIR and vulnerability features, the security
patterns are programmed in advance and employed as input for detection. In this stage,
these security patterns are matched by XPath and command execution according to
their forms (i.e., XML or IR/IR-SSA). Ultimately, these verification results will be
aggregated and exploited to generate a detailed detection report.

In addition, the third-party tools can leverage the internal components of SmartFast to
perform more advanced analysis. For example, running symbol execution method based on

Information extraction Pattern detection

ode Code Numerical w Unprotected
processing statements ‘ } XMUou operation instruction IREaHRy ‘ - V—-
E | e
\\\ _Contract ‘ I >y ]e)ﬁ(;aenc L Y@'E‘"’f“l' lity Eat,te,"ldftfcflgn, i —
inhcziancell | | [ IR form £ et ‘ Redundant | p }
0e n function S BTERy Report
[ Soudity |/ > Internal calls 1 Summarize
expressions | | | Optimization pattem detection | " resylts
Solidity ——— R-SSAform |, Declared || [T
Source code Control flow ‘ | functions Third-party tools Secondary
graph | SmartR (analyze on this basis) development
| ey e ————

Fig.4 Workflow of SmartFast
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SmartIR, or transforming SmartIR to IRs such as LLVM (IR of ZEUS) for the secondary
development.

4.2 SmartiR

SmartIR is used to represent the Solidity source codes. It provides three forms of IR, namely
XML, IR and IR-SSA.

4.2.1 XML Form

In scenarios with Ether transfer, the balance corresponding to the address is usually
inspected. Figure 5 shows the Solidity code and the corresponding XML form for check-
ing the account balance. According to the grammar rules of Solidity, the grammar parser
ANTLR parses the Solidity source code into an IR in XML format. In the example shown in
Fig. 5, the expression is parsed into multiple parts based on the attributes of each field. For
example, uint and msg.sender are parsed as elementaryTypeName and environmentalVari-
able, respectively. In order to define the matching rules conveniently, we leverage ANTLR
to visualize the XML form and obtain the XML parse tree. In this tree, leaf nodes represent
expression fields, and other nodes indicate represent the properties of fields.

4.2.2 IRForm

As the second form of SmartIR, the IR form includes more than 40 instructions, and can be
obtained by converting the CFG constructed in the previous stage. The descriptions of some
critical instructions are listed below.

1) Variables: According to the representation, contract variables are divided into existing
variables (state variables, local variables, constants, Solidity variables, and tuple vari-
ables) and auxiliary variables (temporary variables and reference variables). Existing
variables refer to variables directly used in the contract source code. Auxiliary variables
represent intermediate operations or temporary conversion variables. Reference vari-
ables (REFVAL) are auxiliary variables used for mapping/index access. In addition, we
use LVAL and RVAL to represent the left value and the right value in the expression,
respectively. They can distinguish the allocated variables and the read variables.

Solidity code <expression> XML

uint amountToWithdraw = userBalances[msg.sender]; Parsing <z)\(/g1rrie:;ig]g?:claration> <typeName>
%

| <elementaryTypeName>uint

expression XML tree | </elementaryTypeName></typeName>
ANTLR <identifier>amountToWithdraw
. . with </identifier></variableDeclaration>
CXPIC‘SSIOH = Do grammar  </expression>=<expression>
. . - rules <expression><primaryExpression>
variableDeclaration expression [ arrayRange | ! <identifier>user Balances
. ‘ v </identifier></primaryExpression>
typeName identifier primary expression Visualizing </expression>[

‘ ‘ Expression <arrayRange><expression>
‘ <environmental Variable>msg.sender

fgem?\flltizy E\l?r\?i(t)}:lgrtTo lemEer env\l]r;lil;réi:éltal </environmental Variable></expression>
ypeName aw ‘ XML </arrayRange>]
‘ parse tree  </expression>
uint userBalances msg . sender </expression>

Fig.5 The process of converting Solidity to XML form
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2)

3)

4)

Common operations: The operations can be divided into four types: assignment,
arithmetic, index, and member. The assignment operation can be expressed as
LVAL:=RVAL, where RVAL is generally a variable such as Tuple or Function
(dynamic function assignment). Arithmetic operations are divided into unary opera-
tions and binary operations according to the variable number involved in the operation.
The unary operation can be expressed as LVAL=(!, ,...) RVAL, where ! is logical nega-
tion and s bitwise negation. Binary operations include 19 common operations such
as addition and subtraction, which can be expressed as LVAL=RVAL (4, —) RVAL.
Index operation is mainly employed for array and mapping to access the correspond-
ing values, which can be expressed as REFVAL — LVAL [RVAL] (REFVAL points
to the memory location). Member operations are used to access the internal data of
structures such as struct, which can be expressed as REFVAL — (LVAL, CONTRACT,
ENUM).RVAL.

Other operations: The remaining operations include create, push, etc. Create operation
can be expressed as LVAL = NEW_ARR, where NEW_ARR is employed to create a
new array. Push operation refers to adding variables to arrays or dynamic functions,
which can be expressed as PUSH LVAL RVAL and PUSH LVAL Func. Delete opera-
tion represents deleting the corresponding element, expressed as Del LVAL. The type
conversion operations are often used in contracts, such as string—uint256. To this end,
we have introduced type conversion operations, which are expressed as CONVERT
LVAL RVAL TYPE (uint, etc.). The Unpack operation is utilized to extract the cor-
responding elements in the tuple, expressed as LVAL=UNPACK TUPLEVARIABLE
INDEX(:int). Condition operation refers to the conditions in loops and if operations.
The array initialization operation (Arr Init) is introduced to judge the array initializa-
tion. Finally, the function can return values, generally empty (None), variables (RVAL),
and tuples (TUPLE).

Call function operations: In addition, the program codes should be able to cor-
rectly invoke the functions in the contract. According to the security level and
degree of influence, the operations of invoking function can be divided into two
types HIGH_.LEVEL_CALL and LOW_LEVEL_CALL. They can be expressed as
LVAL=LEVEL_CALL DST Func (Params), where Params mainly includes GAS and
VALUE. LOW_LEVEL_CALL refers to calls of functions with a greater impact,
such as suicide and unprotected call functions for Ether transfers. On the contrary,
HIGH_LEVEL_CALL refers to calls for high-security functions such as transfer.
According to the owner of the function, we can divide the invoked function into
IN_CALL and SOLIDITY_CALL, they can be expressed as CALL Func [Params].
IN_CALL mainly refers to calls of internal functions declared by the contract devel-
opers. When the function type is dynamic, it can be expressed as IN.DYN_CALL.
SOLIDITY_CALL represents invoking the Solidity functions such as keccak256().
In addition, according to the properties of the function, the calls of functions can
be divided into LIB_.CALL, EVENT_CALL, SEND, and TRANSFER. LIB_.CALL
refers to calls of functions in the imported library, such as safemath (using safemath).
EVENT_CALL is mainly used to record the execution status of the function, which
can be expressed as EVENT_CALL Event (Params). Both SEND and TRANSFER are
transfer operations (gas limit is 2,300), which can be expressed as (SEND, TRANS-
FER) DEST VALUE. However, TRANSFER automatically rolls back the state in case
of an accident, so it is safer than SEND. It should be noted that the same function may
have multiple categories, for example, suicide belongs to both LOW_LEVEL_CALL
and SOLIDITY_CALL.
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4.2.3 IR-SSA Form

As the third form of SmartIR, the IR-SSA form is the static single allocation (SSA) rep-
resentation of IR. Figure 6 shows an example of a contract converted from Solidity source
code to IR and IR-SSA. Solidity snippet calls the function withdrawBalance() to send the
balance userBalances[msg.sender] to the address msg.sender. When the transfer is invoked
successfully, the balance will be set to 0. Since the state variables are changed after the event
occurs, and the call function without gas limit, the code satisfies the features of the reentry
attack (refer to Section 2.4). Thus, this code has a reentry vulnerability. In order to detect the
vulnerability, we first extract semantics such as call function for Ether transfer and balance
resetting from contract source code, and then summarize information such as CFG. Based

) ) . Solidity code
mapping (address => uint) private userBalances;

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
if (!(msg.sender.call.value(amountToWithdraw)())) { throw; }
userBalances[msg.sender] = 0;

}

IR
Function withdrawBalance():

REFVAL 3(uint256) -> userBalances[msg.sender]

amountToWithdraw(uint256) := REFVAL 3(uint256)

TEMP 2(bool) = LOW_LEVEL CALL, dest:msg.sender, function:call,
parameters:[] value:amountToWithdraw

TEMP 3 =!TEMP 2

CONDITION TEMP_3

REFVAL 6(uint256) -> userBalances[msg.sender]

REFVAL 6 (->userBalances) := 0(uint256)

IR-SSA
Function withdrawBalance():

userBalances 4(mapping(address => uint256)) := ¢ (['userBalances 1',
'userBalances_5', 'userBalances 3', 'userBalances 0'])

REFVAL 3(uint256) -> userBalances 4[msg.sender]

amountToWithdraw _1(uint256) := REFVAL 3(uint256)

TEMP_2(bool) = LOW_LEVEL CALL, dest:msg.sender, function:call,
parameters:[] value:amountToWithdraw 1

TEMP 3 =!TEMP 2

CONDITION TEMP 3

REFVAL 6(uint256) -> userBalances 4[msg.sender]

userBalances 5(mapping(address => uint256)) := ¢ (['userBalances_4'])

REFVAL 6 (->userBalances_5) := 0(uint256)

Fig.6 The process of converting Solidity to IR and IR-SSA forms
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on this information and aforementioned conversion rules, the IR described in the figure is
further obtained, which disassembles and represents the execution process of the function
withdrawBalance(). For example, REFVAL_3 is used to point out the storage location of
userBalances[msg.sender], and the variable type is uint256; LOW_LEVEL_CALL realizes
the transfer operation with the value of amountToWithdraw, and expresses the returned call
status as the memory variable TEMP_2(bool). As can be seen from the IR form, the judg-
ment leads to the difference execution, resulting in the variable userBalances[msg.sender]
having different values. However, in the IR form, there is no distinction during the subse-
quent use of the variables. To solve this problem, IR-SSA form leverages the ¢ statement
to judge the different execution paths automatically, and the return value is expressed as
userBalances_5. Similarly, the values of the state variables such as userBalances are judged
by the ¢ statement due to they may be changed before invoking the function withdrawBal-
ance(). It is consistent with the description in Section 2.2. Furthermore, in IR-SSA form,
each assignment of variables (e.g., userBalances) employs varied representations, ensuring
that each variable is assigned only once.

4.2.4 Advantages of SmartIR over Other IR

At present, SlithIR (Feist et al. 2019), Scilla (Sergey et al. 2018) and other IRs (Kalra
et al. 2018; Tsankov et al. 2018; SRI Lab 2020) are used for contract security analysis.
SlithIR is the IR used by Slither, and it has the following problems: (i) SlithIR constructs
CFG by extracting relevant information from AST. Since AST forfeits part of the original
semantics, SlithIR cannot represent the original contract accurately, making Slither unable
to detect some vulnerabilities. For example, the var variable (automatic adaptation type)
is deprecated after solc0.5.0 (Solidity 2020), so it is necessary to detect it. However, in
AST generated by solc compilation, var variables are directly converted to type such as
uint8, so that it cannot be identified by SlithIR. (ii) The compilation errors of the contract
cause the AST information to be lost, preventing SlithIR from being built. (iii) Function
identifiers constant and assembly are retained in AST, but SlithIR ignores them. It makes
Slither unable to identify problems associated with these identifiers. These issues can be
resolved with SmartIR. It can be attributed to the XML form in SmartIR obtained by parsing
the grammatical rules, so that the complete contract semantics can be obtained for normal
analysis even if the contract failed to compile. Nonetheless, there are many restrictions to
analysis based only on XML form (e.g., SmartCheck), such as the inability to consider
the relationship between components (e.g., contracts and variables). It leads to a limited
detection range and decreased matching accuracy. In contrast, SmartIR provides IR and
IR-SSA forms to address the aforementioned drawbacks.

Scilla (Sergey et al. 2018) is the IR used by the Zilliqa blockchain. It is unclear whether
Scilla can represent the entire Solidity language or only a subset. Similar IRs include
Michelson (Tezos 2020), IELE (Kasampalis et al. 2018), Tezla (Reis et al. 2020), etc. How-
ever, these IRs store limited contract semantics so that they are unsuitable for static analysis.
To sum up, SmartIR integrates XML, IR, and IR-SSA forms to express the whole original
semantics of the contract accurately and robustly.

Remark 2 (Completeness of IR) Compared with IRs such as SlithIR, SmartIR can express

more contract semantics, support more complete and precise contract matching operations,
and deliver a more robust conversion process.
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4.3 Pattern Verification/Matching
4.3.1 Xpath Matching for XML Form

Figure 7 shows the process of SmartFast using Xpath to discover vulnerabilities. It can be
seen from the figure that the code has a vulnerability named names-reused, that is, there
are two contracts whose names are both “A”. When the code is compiled, the first contract
can pass successfully, while the second contract will be discarded. If contract “B” inherits
the second “A” contract, it will cause the contract not to be executed as the author wishes,
resulting in unexpected errors. However, since this vulnerability cannot be detected after
contract compilation, it blinds the tools (e.g., Slither and Oyente), while it can be detected
by SmartFast. Specifically, according to the principle of vulnerability and the XML parse
tree, the security pattern in the figure is formulated by XPath language. The security pattern
discovers the vulnerable code in XML form by checking whether the current contract name
is the same as the previous and subsequent contracts.

4.3.2 Command Execution for IR/IR-SSA Form

However, it is difficult to consider the relationship between components (e.g., contract
inheritance) for patterns using XPath language, which makes these patterns unsuitable for
detecting some complex vulnerabilities. For example, the code with a vulnerability named
balance equality is as follows:
uint a = this.balance; if (a==100 ether) {...}

Although the variable this.balance will not be used directly when judging equality in the
code, it will indirectly participate in the judgment and cause the condition of if statement
to be interfered by the miner. Thus, we introduce a taint tracking mechanism based on IR
and IR-SSA forms to detect contract codes that indirectly cause problems. Algorithm 1
details the detection process using the code with reentrancy-eth vulnerabilities in Fig. 6.

sourceUnit XML tree
contractDefinition  contractDefinition contractDefinition ~<EOF>
contract identifier { ... } contract identifier { ... } contract identifier is inheritance { ... }
| | | Specifier
A A . B userDefined
Solidity code _______Solidity code TypeName
Contract A {...} Xpath }Contract A{..} )\(
Contract A {...} ~— t_t_ ~ > |Contract A {...} identifier
Contract Bis A {...} P “Contract Bis A {...} |
i A
/lcontractDefinition[ Pattern: Contract name reuse

(identifier/text()[ 1] = preceding-sibling::contractDefinition/identifier/text()[ 1])
or (identifier/text()[1] = following-sibling::contractDefinition/identifier/text()[1])
/identifier

Fig.7 The process of XPath (names-reused)
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Input: The contract in IR/IR-SSA

Output: Vulnerable node/IR and other information
result = (;

The first stage: basic information integration;

for node < functions_and _modifiers_declared < contracts do

. . traverse .
smartir_operations «—— node.internal_calls;

node.context.written = node.write_variables;
Traverse underlying elements and count information;
for ir in node.irs + smartir_operations do
if can_callback(ir) then
| update calls and reads_prior_calls in node.context
if can_send_eth(ir) and not data_denpendence(ir,0) then
L node.context.send_eth U = ir.node

if isinstance(ir, EventCall) then
L node.context.events U = ir.node

The second stage: matching nodes with reentrant features;
for node < functions_and _modifiers_declared < contracts do
context = node.context;
if context.calls and context.send_eth and find value( context.written, context.calls,
context.reads_prior_calls) then
L result U = (node,node.function);

return result

Algorithm 1 Security pattern reentrancy-eth.

In line with the features of reentrancy vulnerabilities, we develop a security pattern called
reentrancy-eth, which analyzes the known information using a python script.

In this algorithm, the variable contracts represents the collection of all contracts,
including inheritance contracts. The composition relationship between contract compo-
nents is contracts — functions — nodes — IRs/IRs-SSA. functions_and_modifiers_declared
involves the functions and modifiers declared in the contract. In this security pattern, the
first stage is the integration of basic information. All of the IRs and call operations are
traversed to summarize the information such as write variables of each node. Since the
transfer with O Ether does not result in the loss of Ether, send_eth can be combined with
data_denpendence(ir,0) to filter this situation, where data_denpendence uses taint tracking
technology to judge the dependency between ir and 0. This stage can simplify the work
of the subsequent pattern matching stage, and reduce the duplicated operations in other
security patterns. The second stage is the feature matching. The nodes in each contract are
traversed and the find_value function is used to find variables that are read before the call
and written after the call. If these features are met, it indicates that the contract with a
reentrancy-eth vulnerability. Finally, when all nodes have been traversed, #J will be returned
if no vulnerabilities are found. Otherwise, it returns the matched node and function. The
reentrancy-eth pattern is one of the security patterns with the Reentrancy category detailed
in Table 3, and there are others, such as reentrancy-no-eth. We have formulated correspond-
ing security patterns for the 119 kinds of vulnerabilities.” These security patterns verify the
logical relationship of contracts in the form of the above script. The main difference between

2The code of patterns is detailed in https:/github.com/SmartContractTools/SmartFast/tree/main/smartfast/
smartfast/detectors.
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them lies in the core idea of detecting vulnerabilities, which is related to the vulnerability
features. With the discovery of emerging vulnerabilities, we only need to find their features
and define the security patterns to detect them. Thus, SmartFast delivers superior scalability.

5 Implementation

SmartFast is mainly implemented in Python with an estimated 25K lines of code.? Its
entire execution process is shown in Algorithm 2. Specifically, SmartFast incorporates the
following 5 components, and each part is responsible for different sub-processes.

Importer The input of SmartFast consists of the contract source code C and the defined
security pattern set B. On the one hand, when the contract is analysed, Importer leverages
ANTRL to parse the code into different code statements. On the other hand, it employs
compilers such as Truffle, Solc, and Remix to extract the AST of source code, and then
constructs the contract inheritance relationship, control flow graph, and Solidity statement
expression.

Converter Converter constructs SmartIR based on the analysis results of Importer. The
construction process is detailed. However, we found many repeated operations during the
matching process. For example, traversing the functions’ IRs to obtain the dependencies
between the variables. Thus, to improve matching efficiency, Converter analyzes SmartIR
and aggregates the results of repeated operations into module information to Matcher.

Input: Contract source code to be tested C, security pattern set B = By U B, (B for
XML form, B; for IR/IR-SSA form)
Output: Problem report rep

Detection results result = ;
The Solidity contract source code is converted to SmartIR;

~  Parsing —~  Construct Compile ~ SSA ~
C C,C AST C,Cz < (C»;

Matching/verification of security pattern;
foreach b € By do R
if ({(b, XML)} = XPath (Cy, b)) # () then

Convert

L result U = ({(6, €1} <2 (b, XML)D;

foreach b € B, do L
if ({(b, IR/IR-SSA)} = Verify (C2/C3, b)) # () then

Convert

L result U = ({(b, C2)) <22 (b, IRNR-SSA))):

Generate
rep <—— result;

return rep;

Algorithm 2 Overall analysis of SmartFast.

3SmartFast is available at https:/github.com/SmartContractTools/SmartFast/tree/main/smartfast.
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Matcher Since the difference of detection methods for XML and IR/IR-SSA forms, the
security patterns need to be defined as By and B,, respectively, and the pattern set B = BV
B>. Among them, the security patterns for detecting a vulnerability may involve a single or
both methods. For example, security pattern b1 € Bj for vulnerability named names-reused,
security pattern by € Bp for vulnerability named shadowing-state, and security pattern
b3 € B for vulnerability named deprecated-standards. In a word, the most suitable detection
method should be established according to the vulnerability and detection method features.
Furthermore, Matcher assigns the corresponding matching algorithm based on IR forms to
validate patterns during the pattern matching process. That is, the XML form selects XPath,
and the IR/IR-SSA form chooses command execution. If the detection result is not equal
to ¥, it means that a vulnerability has been detected. The specific verification process is
detailed in Section 4.3.

Integrator As mentioned above, vulnerabilities such as deprecated-standards involve both
the matching process of XPath and command execution. Thus, on the one hand, Integrator
needs to integrate the detection results of the same vulnerability in the two matching results
together. On the other hand, the detection results of different vulnerabilities need to be
collected and sorted by Integrator. Since the the pattern matching results are expressed as
the problematic SmartIR based on XML and IR/IR-SSA forms, they need to be further
converted into “problem source code” C/C> combing with the source code. As described
in Algorithm 2, the result (b, C1/C3) will be integrated into the detection results result,
which marks the end of Integrator’s work.

Exporter Based on result, Exporter analyzes the causes and execution process of the
vulnerability, and proposes corresponding repair measures. These contents will eventually
comprise a complete analysis report rep.* More importantly, the whole process is automatic
and without manual intervention.

6 Evaluation Result

In this section, we comprehensively evaluate SmartFast in terms of accuracy, robustness
and performance. Also, the experimental result demonstrate the correctness of the theo-
rems in Section 7 from an experimental perspective. Section 6.1 describes the experimental
objectives and related settings. Sections 6.2~6.6 answer the following questions:

RQ1. [Effectiveness] What is the effectiveness of SmartFast in detecting vulnerabilities
of Solidity smart contracts? In this question, we are interested in comparing the
accuracy of SmartFast with the SOTA tools in detecting vulnerabilities of known
faulty smart contracts.

RQ2. [Robustness] Can SmartFast be suitable for the robust detection of contract
vulnerabilities?

RQ3. [Production] How many vulnerabilities are present in the Ethereum blockchain?

RQ4. [Performance] How much overhead (such as time and memory) does SmartFast
require to analyze the smart contracts? Furthermore, we compare its performance
with the SOTA tools. The aim is to identify which tool is the most efficient.

“Examples of analysis reports is available on https://github.com/SmartContractTools/SmartFast/tree/main/
Report.

@ Springer


https://github.com/SmartContractTools/SmartFast/tree/main/Report
https://github.com/SmartContractTools/SmartFast/tree/main/Report

Empir Software Eng (2022) 27:197 Page 27 of 52 197

RQS5. [Authenticity] Can SmartFast discover contracts with substantial and serious vul-
nerabilities in public blockchains such as Ethereum? The goal is to verify whether
SmartFast is effective in the real world.

6.1 Experimental Setup

Objectives We compare the detection results of SmartFast and 7 SOTA tools (described in
Section 2.3) with the results of manual audits. These tools can be divided into two classes
according to analysis methods, the pattern matching-based tools (Slither Feist et al. 2019,
SmartCheck Tikhomirov et al. 2018, Securify Tsankov et al. 2018, Securify2.0 SRI Lab
2020) and symbolic execution-based tools (Oyente Luu et al. 2016, Osiris Torres et al. 2018,
Mythril Software 2020). All experiments were conducted on a machine with Intel Core
i7-10875H and 8GB of RAM.

Evaluation Measures We define the discovery of vulnerability as a problem. By comparing
the detection result of tools with the previous vulnerability label, we can measure whether
the problem occurs. In this way, all problems found by tools are marked as true positive
(TP) or false positive (FP). Moreover, for each tool, a false negative (FN) is a true finding
that was not detected by the tool, and the false discovery rate (FDR) is the number of FPs
divided by the number of all issues reported by the tool:

Yo FP
Yr (TP +FP)’
where 7 is the number of detected contracts. Also, Recall is the number of TPs divided by
the number of real vulnerabilities in the contract:

i TP _
NI (TP +FNy)
where the false-negative rate (FNR) refers to the ratio of undetected vulnerabilities to all of
the vulnerabilities.

FDR = (1)

Recall =

1 — FNR. )

DataSets Table 5 shows the details of three datasets in the experiment. Dataset_1 is a set of
Solidity smart contracts with known vulnerabilities, which is composed of labeled datasets
from each SOTA tool. This dataset contains 149 contracts and 6,331 lines of code. In order
to ensure the correctness of the labels, we have revised and supplemented these labels based
on the verification results of experts. This makes Dataset_1 suitable for analyzing the secu-
rity of Solidity smart contracts (exploring RQ1 and RQ2). According to the vulnerability
severity mentioned in Section 3, we can divide the label of Dataset_1 into: High (218), INFO
(1,152), OPT (760), etc. In order to have a representative picture of the practice and (poten-
tial) vulnerabilities that are present in the production environment, we have downloaded

Table 5 Details of datasets

Dateset Number of issues Contract details

High Medium Low Info Opt Rows Size Nums
Dataset_1 218 561 253 1,152 760 6,331 158.9KB 149
Dataset_2 - - - - - 8,069,699 288.3MB 13,509
Dataset_3 - - - - - 6,491 233.0KB 29
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13,509 real-world Solidity contracts by invoking the Etherscan API (Etherscan 2017). These
contracts make up Dataset_2 (the size is 288.3MB). Due to the large number of contracts in
this dataset and the absence of original labels, the dataset is used only to discuss the number
of vulnerabilities in the Ethereum blockchain (exploring RQ2 ~ RQ5). Moreover, Dataset_3
consists of the widely collected contract source code for 29 well-known vulnerability events,
which was leveraged to further evaluate the authenticity of SmartFast.

6.2 Precision of SmartFast (RQ1)

To answer the first research question, we compare the ability of the 8 tools in detecting
the vulnerabilities present in the Dataset_1. Specifically, the methodology is as follows.
(i) We executed the 8 tools on the 149 contracts.® (ii) We extracted all the vulnerabilities
detected by the tools into a JSON file. (iii) As shown in Table 4, we manually annotated
each vulnerability detected by the tools as one of the 136 categories (unified labels).® For
example, SmartCheck detects a vulnerability called SOLIDITY_TX_ORIGIN that we link
to the category tx-origin (No.54 in Table 2). The results of the first study are presented in
Table 6, which illustrates the FDR and FNR for each tool. It contains three parts: (i) FDR
and FNR of some vulnerabilities (e.g., reentrancy Ether); (ii) the overall FDR and FNR of
each vulnerability severity; (iii) the overall FDR and FNR of each tool.

As from the part (i), for most vulnerabilities, SmartFast has a lower FDR and a higher
Recall than other tools. For instance, SmartFast identifies the locked-ether vulnerabilities
(15 in total) with an FDR of 0%, while the FDR of 50% for Securify. Moreover, the recall
rate detected by SmartFast is 73.33%, which is much higher than SmartCheck (46.67%).
Against the vulnerabilities such as timestamp, some tools have lower FDRs than Smart-
Fast, due to their inferior recall rate and undetectable for these vulnerabilities. For example,
Mythril cannot detect timestamp vulnerability so that its Recall = 0% and FDR = 0%.
However, a fact that cannot be ignored is that SmartFast loses its advantage in detecting a
few vulnerabilities. It can be attributed to the inherent shortcomings of pattern matching.
That is, the inability to execute contracts, makes the pattern matching-based tools unsuitable
for detecting vulnerabilities in contract execution. For the detection of these vulnerabilities,
SmartFast may be weaker than tools using techniques such as symbolic execution (e.g.,
Osiris). Nevertheless, the detection effect of SmartFast is significant compared to other pat-
tern matching-based tools. For example, for the reentrancy-eth vulnerability, the FDR of
SmartFast is inferior to that of Slither and Securify2.0 (18.18%<30.77% <42.86%). Also,
its recall rate is superior to Securify2.0 (37.5%>16.67%).

By observing the severity from Opt to High (i.e., part (ii)), the detection effect of
SmartFast is always the best compared to the other 7 tools. For example, for High sever-
ity detection, the FDR of SmartFast is 2.56% (<14.29%<70%), and Recall = 69.7%
(>60.09%>0.46%). However, some tools enjoy the superior FDR and poor Recall. For
example, the FDR detected by Slither for a vulnerability with Low severity was 1.77%. It is
because Slither is unclear about these vulnerabilities (with a poor recall rate).

From the part (jii), it can be concluded that the detection effect of SmartFast (FDR =
1.57% and Recall = 85.12%) is significantly better than other tools for both FDR and
Recall.

5The source code and execution result of contracts are available on https://github.com/SmartContractTools/
SmartFast/tree/main/Dataset1.

SFor details on vulnerability detection of each tool, please refer to https:/github.com/SmartContractTools/
SmartFast/tree/main/VulnerabilityMapping.
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Listing 10 Contract with 1 function direct () public{
arbitrary-send 2 msg.sender.send (address (this) .balance) ;
31}

Answer to RQ1. What is the accuracy of SmartFast in detecting vulnerabilities on
Solidity smart contracts? Among the other 7 SOTA tools, Slither is the most accurate
detection, which has a precision rate of 95.2%, while SmartFast has an precision rate of
98.43%. Moreover, SmartFast achieved a satisfactory recall rate of 85.12%, which proves
its remarkable effectiveness compared with other tools. It still works for vulnerabilities
above Low severity (i.e., FDR=2.5% and Recall=83.14%).

6.3 Robustness of SmartFast (RQ2)

Considering the two aspects of analysis failure rate and identification accuracy, the robust-
ness can be divided into detection robustness and analysis robustness. The detection
robustness is correlated with the ratio of contracts that can be analyzed (i.e., 1-failure
rate). The analysis robustness reflects the performance of tool resistance to the contract
code obfuscation (misleading reviewers). For the detection robustness, as shown in Table 6,
SmartFast can detect all contracts in Dataset_1 (Failed = 0%). This is impossible for tools
such as Slither and Securify?2.0. It is because Slither cannot obtain the AST syntax tree of
the contract when the contract compilation fails, which causes the analysis to fail. For tools
such as Securify2.0, the analysis failure is mainly attributed to errors in internal analysis
components (e.g., IR).

For the analysis robustness, the code of some contracts in Dataset-1 was confused
by inserting irrelevant statements, disrupting data dependencies, etc. (as shown in List-
ing 10~13).”7 Table 7 illustrates the analysis results of the tools before and after the
obfuscation, where each severity incorporates 3 kinds of vulnerabilities. For instance, for
the arbitrary-send vulnerability, anyone can invoke the function “direct()” shown in List-
ing 10 to extract all the contract balances due to the lack of permission restrictions. Towards
making the vulnerability code as invisible as possible, the variables “msg.sender” and
“address(this).balance” were replaced by “destination” and “value” in Listing 11, and the
assignment statement for irrelevant variables (line 4) was employed to disrupt the connec-
tion of the context. As envisioned, SmartFast is able to resist these confusion methods,
and the vulnerability can be detected for both contracts. It can be attributed to the data
dependencies and taint analysis mechanisms adopted within SmartFast.

Obfuscated contract code may lead to false positives by the tools, which need to be pre-
vented for SmartFast. For the contract shown in Listing 12, it addresses integer-overflow
vulnerabilities by using the function “assert()”” to check the operation variables. Similarly,
as shown in Listing 13, the variable “in_c” was checked in the assert() instead of the variable
“c”, as well as the statement in line 4 was added. As a result, both contracts were correctly
marked as secure by SmartFast. Thus, SmartFast can robustly identify contract vulnerabili-
ties for these superficial obfuscation methods that disrupt contextual relationships. However,
tools such as SmartCheck are vulnerable to being confused by these methods for their failure
to consider relationships between variables. For instance, SmartCheck has missed a times-
tamp vulnerability in the confused contract timestamp. In the future, we will investigate

"The code is available on https:/github.com/SmartContractTools/SmartFast/tree/main/Obfuscation.
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Listing 11 Contract after
obfuscation

1 function direct () public{

2 address destination = msg.sender;
3 uint value = address (this) .balance;
4 uint unuseless_variable = 0;

5 destination.send(value);

6

}

the performance of SmartFast in the face of more complex code obfuscation techniques to
further validate its analysis robustness.

Answer to RQ2. Can SmartFast be suitable for the robust detection of contract
vulnerabilities? Compared with 7 SOTA tools, SmartFast can analyze more contracts
successfully (all 149 contracts in Dataset_1 were successfully analyzed) and provide bet-
ter resistance to the confusion of contract code, which proves the superior robustness of
SmartFast.

6.4 Vulnerabilities in Production Smart Contracts (RQ3)

To answer the third research question, we analyzed the performance of the 8 tools to detect
contract vulnerabilities in Dataset_2. Table 8 presents the results of executing the 8 tools on
the 13,509 Ethereum contracts. It shows the detection situation of various severity for dif-
ferent tools. Among them, SmartFast detected a large number of contract vulnerabilities,
focusing on the severity of Low and Info. Although as described in Durieux et al. (2020),
we found that the contract detection results include many vulnerabilities with inferior uti-
lization difficulties (i.e., the proportions of probably and possibly are High (70%), Medium
(89.6%), Low (85.6%), respectively), marking these problems can draw the attention of
contract developers to possible security threats, thereby reducing the risk of the contracts. It
should be noted that the number of false positives made by tools should be within accept-
able limits. Otherwise, it will pose workload challenges for the users. Combining the results
of Sections 6.2 and 6.3, SmartFast can evaluate the security of the contract with lower
false positives and false negatives than others. Moreover, the vulnerabilities identified by
SmartCheck are mainly focused on the severity of Medium and Info. Also, it can only iden-
tify three kinds of vulnerabilities with High severity, reflecting the necessity to enhance its
ability to exploit critical vulnerabilities. In contrast, Securify2.0 detected numerous vulnera-
bilities with High severity. Combined with the analysis results of Table 6 (i.e., it misreported
70% of vulnerabilities with High severity), there may be a large number of false positives.
In addition, tools such as Securify2.0 identified less total number of vulnerabilities than
others. This can be attributed to Securify2.0 has 7,327 unanalyzable contracts (Failed =
54.2%). The main reason for this phenomenon is that Securify2.0 can only analyze contracts
with compiled versions above 0.5.0. In conclusion, compared with other tools, SmartFast
can identify vulnerabilities more accurately due to the precise IR and comprehensive secu-
rity patterns. Also, only a few contracts cannot be analyzed by SmartFast (Failed = 0.4%),
which further demonstrates its superior robustness.

1 function mul (uint256 a, uint256 b) ... returns (uint256) {
2 uint256 ¢ = a * b;

3 assert(a ==0 || ¢/ a ==Db);

4 return c;

51}

Listing 12 Contract without integer-overflow
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1 function mul (uint256 a, uint256 b) ... returns (uint256) {
2 uint256 c = a * b;

3 uint256 in_c = c;

4 address unuseless_value = 0x0;

5 assert(a == 0 || in_c / a == Db);

6 return c;

71

Listing 13 Contract after obfuscation

More importantly, through this experiment, we found that all tools except Mythril have
discovered many vulnerabilities and there are few contracts without vulnerabilities. It is
noteworthy that the harm caused by the contract is related to both vulnerabilities and fre-
quency of use. The contracts with vulnerabilities alone may not cause damage to users.
Thus, in order to evaluate the security of the Ethereum contracts more reasonably, we have
introduced the number of contract transactions as the activity frequency of the contract.
Figure 8 presents the correlation between the number of vulnerabilities with various sever-
ity and the number of contract transactions. It shows the following phenomenon. (i) The
number of vulnerabilities with different severity and the number of contract transactions
hold a similar distribution, indicating that contracts tend to have vulnerabilities with varying
severity. (ii) The number of contract transactions is widely distributed, and most transac-
tions involve contracts with vulnerabilities. (jiii) There is a polarization between the number
of transactions and vulnerabilities. It is dangerous to have many vulnerabilities in contracts
with greater than 10K transactions, and instead, the harm of contracts with less than 20
transactions and many vulnerabilities may not be serious. (iv) The number of vulnerabilities
with severity levels from High to Info has gradually increased, suggesting that the contracts
on Ethereum need to be further improved.

Answer to RQ3. How many vulnerabilities are present in the Ethereum blockchain?
Most of the contracts in Dataset_2 were detected with vulnerabilities ranging from Opt to
High severity. Among them, the vulnerable contracts with High, Medium, and Low sever-
ity accounted for 31%, 94%, and 80%, respectively. Also, the proportion of the contracts
where vulnerabilities with inferior utilization difficulties (i.e., probably and possibly) are
High (70%), Medium (89.6%), and Low (85.6%), respectively. Although these vulnera-
bilities are not prone to cause harm, identifying them can allow contract owners to focus
on risky code and then develop normative contracts. Moreover, many contracts (94%) in
Ethereum can be optimized to improve the operation status of contracts.

6.5 Execution Overhead of SmartFast (RQ4)

In this section, we present the execution overhead required by the tools for ana-
lyzing contracts on the public blockchain (e.g., Ethereum). First, we selected about
100 contracts with a size of about 121KB, such as the contract with address
Oxce5b23f11c486be7f8bedfac3bdee6372d7ee91e (3,049 lines). Then oscillo was employed
to record the time and memory overhead of detecting these contracts.® It can be seen from

8See https://pypi.org/project/oscillo/ for details.
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Fig. 8 Correlation between the number of vulnerabilities detected by SmartFast and the number of contract
transactions. In the figure, the upper limit of the number of transactions is set to 10,000 (that is, 10,000 for
more than 10,000)

Fig. 9(a) that the pattern matching-based tools (SmartFast, SmartCheck, Slither) gener-
ally require less time overhead than the symbolic execution-based tools (Oyente, Mythril,
Osiris). But there are exceptions. For instance, Securify2.0 takes an average of 450 seconds
to analyze a 121KB contract, which is more than tools such as Oyente. It can be attributed
to the cumbersome internal detection mechanism in securify2.0. On the contrary, Smart-
Fast adopts a streamlined design principle to complete the detection in an average of 11.5
seconds. However, since it makes up for the shortcomings of SmartCheck and Slither, more
operations are required, which brings an acceptable additional time overhead (about 3~4
seconds).

As shown in Fig. 9(b), due to thousands of search paths need to be traversed and
executed in symbolic execution-based tools such as Osiris, they generally require more
memory overhead than pattern matching-based tools. It reflects the main advantage of pat-
tern matching-based tools that contracts can be accurately detected in a finite time. In
addition, SmartFast has less memory overhead than other tools (e.g., Slither), which ben-
efits from the optimized patterns. The phenomenon brings great development potential for
SmartFast. For instance, the forms of XML and IR in SmartIR can be analyzed in paral-
lel to make full use of memory space. This can further improve the detection efficiency of
SmartFast.

Answer to RQ4. How much overhead does SmartFast require to analyze the smart
contracts? SmartFast takes an average of 11.5 seconds to analyze a 121KB Ethereum con-
tract, which is only one-tenth (or even less) of symbolic execution-based such as Oyente.
Compared with pattern matching-based tools such as SmartCheck, the time is within an
acceptable range. Moreover, SmartFast has a superior memory overhead (60MB), which
provides its expansive development potential.
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Fig.9 Comparison of program overhead in terms of time and memory. Each value in the figure refers to the
average of 50 execution results
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1 mapping (address => uint256) invested;

2 mapping (address => uint256) atBlock;

3 function () external payable {

4 uint256 amount = invested[msg.sender] % 4 / 100 x (block.number - atBlock|[
msg.sender]) / 5900;

5 msg.sender.transfer (amount) ;

6

7}

Listing 14 Contract with integer-overflow
6.6 Authenticity of SmartFast (RQ5)

Towards exploring the superior performance of SmartFast, we demonstrated the detection
results of real-world contracts (including those deployed on Ethereum in Dataset.2 and
those derived from announced vulnerability incidents in Dataset_3). Table 9 shows some
examples of Ethereum contracts in Dataset_2. It contains the detection results of tools, as
well as the address, balance and other information of the contracts.

Detection of integer-overflow Vulnerabilities The contract WinStar currently has a ba-
lance of 1.60E+15Wei and involves 25 transactions. There is an integer-overflow vulnera-
bility in line 4 of Listing 14 (corresponding to line 43 in the contract), which occurs
when atBlock[msg.sender]=1 and invested[msg.sender]=1157920892373161954235709
85008687907853269984665640564039457584007913129639935. The vulnerability will
make users extract the incorrect amount. It can be detected by SmartFast, but yet not
detected by tools like Slither and Osiris. Similar contracts include ETHMaximalist (line
171), AceTokensden (line 255), Eighterbank (line 585), and AceDapp (line 242). For
these contracts, SmartFast can accurately find the line number of vulnerable code, while
tools such as Slither and SmartCheck are helpless. As we all know, Oyente supports the
detection of integer-overflow vulnerabilities. However, against the contract WCT (balance
9.00E+16Wei), it reported that there is an integer overflow vulnerability in line 43 with
the code c=a-+b (as shown in Listing 15). Since the arithmetic variables were validated by
assert(c>a). Thus, this is a false positive for Oyente. As expected, SmartFast detects that
this code is secure. Similar contracts include CoinSuter and so on.

Detection of reentrancy-eth Vulnerabilities SmartFast detected a reentrancy-eth vulner-
ability in line 243 (corresponding to line 14 of Listing 16) of the contract RedExchange
(2.00E+16Wei). The function “payFund()” is declared as public. Although this function is
guarded with the modifier “onlyAdministrator”’, anyone can become a member of admin-
istrators by invoking the function “RedExchange”. Moreover, the gas specified by the call
function is too large, while the secure gas is usually 2300 (<«40,000). Thus, for this contract,
attackers can construct an attacking contract and leverage the function “setBondFundAd-
dress()” to set the withdrawal address “bondFundAddress” as the attacking contract address,
thereby realizing a reentrancy attack. However, tools such as Oyente didn’t identify this

1 library SafeMath {

2 function add(uint256 a, uint256 b) ... returns (uint256 c) {
3 c =a + b;

4 assert (c >= a);

5 return c;

6 }

71

Listing 15 Contract without integer-overflow

@ Springer



Empir Software Eng (2022) 27:197 Page 39 0of 52 197

1 function RedExchange() public {
2 administrators[msg.sender] = true;
3}
4 modifier onlyAdministrator() {
5 require (administrators[msg.sender]) ;
6 i
7}
8 function setBondFundAddress (address _newBondFundAddress)
onlyAdministrator () public {
9 bondFundAddress = _newBondFundAddress;
10 1}
11 function payFund() payable public onlyAdministrator() {
12 e
13 totalEthFundRecieved = SafeMath.add (totalEthFundRecieved,
ethToPay) ;
14 if (!bondFundAddress.call.value (_bondEthToPay) .gas (400000) ()) {
15 totalEthFundRecieved = SafeMath.sub (totalEthFundRecieved,
_bondEthToPay) ;
16 ;
17 }
18 }

Listing 16 Contract with reentrancy-eth

vulnerability. Similarly, there is a reentrancy-eth vulnerability in line 127 of the contract
CaptureTheFlag, while tools like Oyente and Mythril cannot detect it.

Detection of shadowing-state Vulnerabilities For contract SimpleAssetManagement
(1.06E+18Wei), SmartFast discovered the state variables “_name” and “_symbol” (as shown
in Lines 2 and 8 of Listing 17) are redeclared when the contract is inherited. It causes
the functions “name()”’ and “symbol()’’ inherited by Dpass to always return the initial values
regardless of how both variables change. Similarly, there are the variable “ethWei” and the func-
tion “getLevel()” in the contract GameFair (1.31E+19Wei). However, tools such as Secu-
rify2.0 cannot detect these vulnerabilities. To be worse, Securify2.0 inspects a vulnerability
about the variable “version” in the contract ProxyEvent. However, this variable has not been
used in the parent contract, so this is a false-positive for Securify2.0. Similarly, the contract
BDSF was misreported. But it is secure for SmartFast to detect two false-positive codes.

Detection of erc20-approve Vulnerabilities The ERC20 approve attack is a type of trans-
action sequence dependency vulnerability (TOD). This vulnerability can be attributed to the
approve function, which is employed to authorize others to use tokens. When the authorizer
changes the original authorization, the user creates a consumption transaction that spends
the original authorization token and sets more Gas than the changed authorization transac-
tion. In this way, the miners will give priority to the consumption transaction, so that the
user can spend the old authorized amount as well as the new authorized amount. SmartFast
detected this vulnerability in Contract Auction (4.94E+17Wei) and GooglierToken, while
tools like Osiris and Securify2.0 missed these two vulnerabilities.

contract ERC721Metadata is ... {
string private _name, _symbol;
function name () external view returns (string memory) {return _name;}
function symbol () external view returns (string memory) {return _symbol;}
}
contract ERC721Full is ..., ERC721Metadata { ... }
contract Dpass is ERC721Full, ... {
string private _name = "Diamond Passport", _symbol = "Dpass";

}

OO Uk W

Listing 17 Contract with shadowing-state
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mapping (address => uint256) balances;

uint256 totalSupply_;

function totalSupply() public ... {return totalSupply_;}

function transfer (address _to, uint256 _value) public returns (bool) {

balances[msg.sender] = balances[msg.sender].sub(_value);

0O U WN =

}

Listing 18 Contract with uninitialized-state

Detection of locked-ether Vulnerabilities SmartFast detected a locked-ether vulnera-
bility in the contract TokenFactoryProxy (4.5E+18Wei). In this contract, the function
“upgradeToAndCall()” (line 17) can receive Ether value. However, the contract has no with-
drawal function, so the user cannot retrieve Ether exploited to call the contract. For this
vulnerability, tools such as Slither will underreport.

Detection of uninitialized-state Vulnerabilities As shown in Listing 18, in the function
“totalSupply()” of the contract Token (1.10E+16Wei), the variable “totalSupply_” is called
directly without initializing. This violates the development specification. Moreover, the con-
tract does not provide a function to initialize the mapping variable “balances”, so that the
function “transfer()” makes an error when it is invoked. Thus, we should develop contracts
in compliance with the development specifications to improve the security of contracts. For
these vulnerabilities, SmartFast can provide warnings, which is impossible with tools such
as Slither.

Detection of unused-state Optimizations In addition to discovering vulnerabilities,
SmartFast can also implement code optimization. It detects that the state variables such as
“week” (line 2,979 of the contract Oracle) are declared but not used, which makes extra
gas wasted. However, tools such as SmartCheck cannot support this detection. Although
Slither can detect this problem, it located the state variables that have been used such as
“ABILINTERFACE_ID” (a false positive).

In addition, we leverage the contracts of well-known vulnerability incidents in Dataset_3
to further clarify the performance of SmartFast.” Table 10 describes the information about
the contracts, including security incidents, vulnerability names, contract addresses, eco-
nomic losses, and detection results. The DOS vulnerability incident for the KotET
contract. KotET designed a game “throne race”, in which the player with the largest amount
of competition will win the throne. However, in February 2016, the players could not win
the throne, no matter how much ETH they sent to the contract. Cause of the vulnerability:
the vulnerable contract is shown in Listing 19. The attacker first constructs an attacking
contract containing a fallback function with function “revert()”, and invokes the function
“bid()” through the contract to become the king. Thus, the function “send()” (line 12) trig-
gers the fallback function and always returns the false, so as to intercept the execution of
bid(). As a result, SmartFast benefits from its perfect vulnerability patterns to detect this
vulnerability, but it is missed by tools such as securify2.0.

The Dao Vulnerability Incident In June 2016, the reentrancy-eth vulnerability in the
DAO contract caused a loss of $60 million ETH. Cause of the vulnerability: as shown

The contract code is detailed in https:/github.com/SmartContractTools/SmartFast/tree/main/
VulnerabilityIncidents.
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Listing19 KotET 1 address public currentLeader;

2 uint256 public highestBid;

3 function bid() public payable ({
require (msg.value > highestBid);
require (currentLeader.send (highestBid));
currentLeader =msg.sender;
highestBid = msg.value;

00 O Ut

in Listing 20, the behaviors of lines 4-5 describe the implementation of the function
“withdrawRewardFor”. Since the operation balances[msg.sender] = 0 is completed after
executing the call function without a gas limit. It allows attackers to invoke splitDAO()
repeatedly without performing the code in line 6. Thanks to the accurate IR, SmartFast can
identify this vulnerability, while tools like securify2.0 and Mythril cannot.

The parity-multisig-bug Vulnerability Incident for the Parity Wallet In July 2017, a per-
mission vulnerability in the Party contract library was exploited by attackers, resulting in
the theft of over $30 million ETH. Cause of the vulnerability: as shown in Listing 21, since
the visibility of the function “initWallet” is public, attackers can change the owner of the
wallet by invoking the initWallet. Similarly, SmartFast has identified the vulnerable code
due to its comprehensive security patterns. However, tools such as Slither and SmartCheck
without the ability to detect this vulnerability.

The Second Parity Wallet Vulnerability Incident Towards repairing the above vulnera-
bility, Parity supplemented the modifier “only” (line 12 in Listing 22) to restrict init-
Multiowned() to be invoked only once. However, in November 2017, the revised contract
caused about $152 million ETH to be frozen due to a permission vulnerability. Cause
of the vulnerability: as shown in Listing 22, an attacker can invoke the initMultiowned()
through the attacking contract. Since the variables such as m_numOwners are operated from
the attacking contract (i.e., m_numOwners = 0), the modifier “only” will be passed and
the owner of the library contract will be updated to the attacker. Fortunately, SmartFast
was able to identify this vulnerability, demonstrating its superior identification ability for
vulnerabilities.

The integer-overflow Vulnerability Incident for the SMT Contract In April 2018, the
transactions of the SmartMesh (SMT) contract were suspended by various platforms such as
Ethereum. Cause of the vulnerability: as shown in Listing 23, attackers can manipulate the
input parameter of the function “transferProxy” to make _fee+_value = 0 (integer-overflow),
so that the verification in line 3 will be passed. Thus, attackers can obtain plenty of money.
Also, contracts such as EMVC caused economic losses due to the ineffective arithmetic
examination performed by the non-conforming SafeMath library. However, although the
arithmetic variables are checked in BEC contract, errors in its examination logic caused
an integer-overflow vulnerability. Since methods such as pattern matching are challenging

Listing 20 The Dao 1 function splitDAO() ... {
2 Transfer (msg.sender, 0, balances[msg.sender]);
3 withdrawRewardFor (msg.sender) ;
4 f (reward) throw;
5 sg.sender.call.value (reward) ()
6 balances [msg.sender] = 0;
7
81}

@ Springer



Empir Software Eng (2022) 27:197 Page 43 0of 52 197

Listing 21 parity_multisig_bug 1 function initWallet(...) {
2 initMultiowned(...);
3}
4 function initMultiowned(...) {
5 m_numOwners = _owners.length + 1;
6 m_owners[1l] = uint (msg.sender);
7 m_ownerIndex[uint (msg.sender)] = 1;
81

to detect vulnerabilities with complicated logic, SmartFast missed this vulnerability. Thus,
the combination of dynamic analysis (e.g., fuzzy testing) and static analysis (e.g., pattern
matching and symbolic execution) is a trend in the field of contract audit.

The Block Parameters Vulnerability Incident for the FOMO3D Contract In August 2018,
FOMO3D lost $3 million ETH. Cause of the vulnerability: the function “airdrop()” employs
block parameters such as block.timestamp (line 2 in Listing 24) to generate a random seed.
Since these parameters can be predicted by the miners, the attackers can conspire with
the miners to infer the seed in advance and meet the game victory conditions. However,
tools such as SmartCheck yielded false negatives due to the rough detection rules. On the
contrary, SmartFast exhaustively considers the features of this vulnerability to detect it
successfully.

Answer to RQ5. Can SmartFast discover contracts with substantial and serious vul-
nerabilities in public chains such as Ethereum? From the aforementioned examples, it
is clear that SmartFast can find vulnerabilities ignored by other tools, reflecting its detec-
tion effectiveness on Ethereum contracts. Moreover, the contract examples in Dataset_2
indirectly confirm the authenticity of the detection conclusions in Section 6.4. In addition,
SmartFast is not only a tool for error correction, but also can optimize contracts and reduce
unnecessary costs.

7 Deep Insights of the Correctness and Effectiveness
7.1 Correctness Analysis

SmartIR can almost accurately and unambiguously describe the semantics of the original
contract C. In other words, considering that a program C represents the contract C in Smar-
tIR, which will hardly destroy the semantics of C. Let Bz be the set of patterns satisfied by
6, which can be expressed as Bg = {b|b € B A match(b, 5)}, where B is the set of all vul-
nerability patterns to be checked, and the relationship match(b, 6) indicates that program
C satisfies pattern b. From the following inference, it can be concluded that SmartFast can
analyze the contract security correctly.

Lemma 1 The contract C satisfies a vulnerability pattern b in Bc = The program C
satisfies the pattern b in Bg.

Listing 22 parity_multisig_bug_2 1 function initWallet(...) only {
initMultiowned(...);

2

31}

4 function initMultiowned(...) only {
5

6

7

}
modifier only { if (m_numOwners > 0) throw; _; }
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1 mapping (address => uint256) balances;

2 function transferProxy (uint256 _value, uint256 _feeSmt,...) public ...{
3 if (balances[_from]<_feeSmt+_value) revert () ;

4 Transfer (_from, msg.sender, _feeSmt);
5

6}

Listing 23 SMT

Proof The contracts’ formal description mainly changes the representation of the program-
ming language, barely the contract original semantics. Also, pattern matching designed for
vulnerabilities inspects the semantics of the contract expression, instead of the language.
In other words, the effect of pattern matching is related to the semantics checked by the
patterns, but not the representation form. Moreover, the patterns in sets Bz and B¢ corre-
spond one-to-one, that is, there is a mapping function f(x) to make {B = f(b) IE € Bg)
hold. Thus, the lemma is proved. Nonetheless, it cannot be ignored that when patterns are
defined inaccurately, it may cause false positives and false negatives. Fortunately, from
Remarks 1~2, it is known that the patterns and SmartIR of SmartFast are superior to other
tools (e.g., Slither). O

Theorem 1 (Correctness) The program C has no vulnerabilities on patterns set Bg = The
contract C is safe for Bc.

Proof From Lemma 1, if the program C does not satisfy each pattern be Bg, it can be
concluded that b is not satisfied with the contract C, i.e., C is safe for pattern set B¢. So far,
the theorem has been proved. O

7.2 Effectiveness Analysis

Assuming that the vulnerability pattern set B; for other tools such as Slither, and the
vulnerability pattern set B, for SmartFast. Since two conditions are required to detect
a vulnerability, i.e., the search area contains the vulnerability area (the probability is
recorded as Pj,) and the vulnerability can be detected in the vulnerability area (the prob-
ability is recorded as Py q), so the probability of detecting the vulnerability class;
(class (b) = classy, where class (-) represents the vulnerability category of the patterns)
can be expressed as:

P(match(b, C)) = Pi, x Pfina €)

From Remark 1, SmartFast can detect more kinds of vulnerabilities and accurately describes
each security pattern. Thus, |class (B1)| < |class (B2)| and Pfing—B, < Pfind—B,-
Moreover, combined with the description in Remark 2, SmartIR can express the original
semantics more wholly and exactly than the IRs such as SlithIR, which increases the pos-
sibility of finding vulnerabilities, namely P;,—p, < Pi,—p,. Then P(match(b;, C)) <
P(match(by, C)) is obtained, where class (b € B1) = class (by € By) = class;. Thus,

1 function airdrop() ... {

2 uint256 seed = uint256 (keccak256 (abi.encodePacked ((block.timestamp).add...;
3 if((seed —((seed/1000)%1000))<...)

4 return (true);

5 R

6}

Listing 24 FOMO3D
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compared with SOTA tools (e.g., Slither), SmartFast can detect the contract security
accurately by optimizing the IR and the security patterns.

Remark 3 (Effectiveness) Compared with the SOTA tools such as Slither and SmartCheck,
SmartFast can better detect the security of contract C.

8 Discussion

The Advantages of SmartFast As illustrated in Section 6, each tool has its own character-
istics and applicable scenarios. For example, pattern matching-based tools (e.g., SmartFast
and Slither) can detect more vulnerabilities than symbolic execution-based tools (e.g.,
Mythril). This benefits from the convenient formulation of vulnerability rules in pattern
matching-based analysis tools. Moreover, compared to SOTA tools, SmartFast has supe-
rior vulnerability detection capabilities and can efficiently detect vulnerabilities of contracts
deployed on Ethereum (including vulnerability incident contracts). Also, it can analyze
more contracts and resist code obfuscation methods that disrupt contextual logic. These
benefit from its unified vulnerability severity evaluation mechanism, robust IRs, perfect
security patterns, and accurate pattern verification methods. In addition, the whole process
from contract input to report output has no manual intervention, which is convenient for
users.

The Limitation of SmartFast Since the limitations of pattern matching, SmartFast cannot
give the input that caused the vulnerabilities to occur. As described in Section 6.6 on integer-
overflow vulnerability, although SmartFast uses taint analysis and data dependencies to
simulate the dynamic execution process of contracts, it still fails to achieve input solving and
vulnerability verification. While tools based on symbolic execution (e.g., Oyente) and fuzzy
testing (e.g., SMARTIAN) can obtain the specific vulnerability “input” by accessing Z3
solver (Corporation 2020) and fuzzers (Choi et al. 2021). Moreover, similar to other static
analysis tools (e.g., SmartCheck), the vulnerability detection effect of SmartFast depends
on the accuracy of the defined patterns, thus requiring further investigation for unknown
vulnerabilities. From these aspects, it can be concluded that pattern matching-based tools are
suitable for comprehensive detection, while tools based on dynamic analysis and symbolic
execution are good at accurate detection.

The Improvement of SmartFast The theorem proving method serves as another branch in
contract auditing, which uses mathematical logic to ascertain whether the contract satisfies
the properties (e.g., maintaining the total amount of Token issued). It can verify the deeper
properties of the contracts, while neglecting the detection of specific vulnerabilities (e.g.,
reentrancy). Moreover, with the rise of technologies such as fuzzy testing and artificial intel-
ligence (AI), SmartFast has ushered in many optimization opportunities. For instance, the
learning of the AI model may replace the manual definition of security patterns. To this end,
we will investigate in the future how to leverage the advantages of these tools and technolo-
gies to remedy the shortcomings of SmartFast, which can make SmartFast more precise and
robust (i.e., resistance to advanced code obfuscation methods). In addition, as part of main-
taining the security of the contract, making improvements after detecting vulnerabilities can
better protect users’ privacy and property security. For instance, derived from the advantages
of static analysis (i.e., the detected vulnerabilities have specific features), SmartFast can
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perform customized repairs for vulnerabilities (e.g., the deletion, modification, and addition
of contract code) according to their operating mechanism (Krupp and Rossow 2018).

The Application Prospect of SmartFast As security-as-a-service businesses are emerging,
smart contract security and the contracting of these businesses is an interesting problem
space. Similar to Slither, SmartFast can work with Remix to provide security audit services
for the Ethereum contract developers. Also, it can serve as an extension plug-in (e.g., a
component of the Blockchain Development Kit) for development tools such as Visual Studio
Code. Besides, the pattern matching method can integrate the features of Webshell Backdoor
to analyze the security of website scripts (e.g., JSP and PHP).

9 Related Work
9.1 Dynamic Analysis

In 2016, Hirai first proposed using Isabelle to determine whether there are vulnerabili-
ties in the logic code. Grishchenko et al. (2018c) and Hildenbrandt et al. (2018) further
used F*s framework and K framework to transform EVM into a formal tool. Recently, Jiao
et al. (2020) described the executable semantics of contract source code in the K frame-
work. However, these tools are difficult to describe vulnerabilities, which brings challenges
to vulnerability analysis. Moreover, these analysis tools require users to manually provide
specifications or invariants, whose automation needs to be improved. Recently, Nguyen
et al. (2020) proposed an adaptive fuzzer called sFuzz to detect limited vulnerabilities (e.g.,
timestamp). SMARTIAN (Choi et al. 2021) and ILF (He et al. 2019) used techniques such
as machine learning and dynamic data-flow analysis to generate high-quality datasets for
fuzzy testing, which can help fuzzer explore the deep contract paths with complex condi-
tions. Although these tools detect fewer vulnerabilities than SmartFast, analyzing features
of these tools (e.g., execution process) can help us further optimize SmartFast.

9.2 Static Analysis

Detection Based on EVM Bytecode Permenev et al. (2020) used predicate abstraction and
symbolic execution engine to verify the contract security properties such as time. Other
tools based on symbolic execution include ETHBMC (Frank et al. 2020), teEther (Krupp
and Rossow 2018), BeosinVaaS (Beosin 2020), Oyente (Luu et al. 2016), etc. Schneidewind
et al. (2020) used Horn clauses to describe the semantics of EVM bytecodes, and further
proposed a static analyzer named eThor. Similar tools based on EVM bytecode analysis
include EtherTrust (Grishchenko et al. 2018a), SODA (Chen et al. 2020), Securify (Tsankov
et al. 2018), etc. However, Grishchenko et al. (2018b) stated that the tools had lost part of
the original semantics during the code conversion.

Detection Based on Solidity Source Code NeuCheck (Lu et al. 2019) constructed a con-
tract syntax diagram based on the contract source code, and searched for vulnerability
patterns in the diagram to find the corresponding vulnerabilities. However, they did not give
a case for restoring Solidity semantics, nor give formal security attributes. Similarly, ZEUS
(Kalra et al. 2018) takes the Solidity code as an input and abstracts the code into IR (i.e.,
LLVM). However, Torres et al. (2018) and Grishchenko et al. (2018b) noted that ZEUS had
an unsound conversion process. Similar tools include Slither (Feist et al. 2019), SmartCheck
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(Tikhomirov et al. 2018), etc. Compared with these tools, SmartIR can restore more con-
tract semantics, enabling SmartFast to realize the contract analysis with fully automatic,
superior precision and recall.

In addition, some tools (e.g., Rodler et al. 2019 and Liu et al. 2018) focus on a single
vulnerability (e.g., reentry and arithmetic bugs). These works are helpful for SmartFast to
optimize the detection of these vulnerabilities.

10 Conclusion and Outlook

In this paper, we first proposed a vulnerability assessment model to unify the measure-
ment criteria. The evaluation of the tools indicates that most pattern matching-based tools
exhibit a superior vulnerability coverage rate over the symbolic execution-based tools. How-
ever, since constrained IR and imperfect security patterns in pattern matching-based tools,
it remains a challenge to discover vulnerability more accurately and comprehensively. To
remedy these deficiencies, we designed SmartIR and pattern verification methods, which
constitute SmartFast. The evaluation results demonstrate its efficiency (only took 11.5 sec-
onds for 121KB Ethereum contract). Compared with SOTA tools, SmartFast has a higher
precision rate (98.43%) and a lower false negatives (14.88%). Also, SmartFast can ana-
lyze most contracts deployed on Ethereum practically (99.6%) and resist code obfuscation
methods that disrupt contextual logic, which shows its superior robustness. Furthermore, it
can discover vulnerability codes accurately in major vulnerability incident contracts. For
instance, a reentrancy-eth vulnerability for the “The Dao” security incident. Finally, we dis-
cussed the limitations of SmartFast and the in-depth integration with technologies such as
symbolic execution, which inspires the future development of automated contract analysis
tools.

Acknowledgements This work was supported by the National Key R&D Program of China under Grant
No.2021YFB2700603, National Natural Science Foundation of China under Grant No0.62072487 and
No0.62172405, and Beijing Natural Science Foundation under Grant No.M21036.

Declarations

Conflict of Interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper

References

Beosin (2020) Beosin: Blockchain security one-stop service. [EB/OL]. https://beosin.com/#/. Accessed 1
May 2021

Blockchain C (2018) Bamboo: a morphing smart contract language. [EB/OL]. https:/github.com/
cornellblockchain/bamboo. Accessed 1 May 2021

Bocek T, Stiller B (2018) Smart contracts—blockchains in the wings. In: Digital marketplaces unleashed.
Springer, pp 169-184

Chen T, Cao R, Li T, Luo X, Gu G, Zhang Y, Liao Z, Zhu H, Chen G, He Z, Tang Y, Lin X, Zhang X (2020)
SODA: a generic online detection framework for smart contracts. In: NDSS. The Internet Society

Choi J, Kim D, Kim S, Grieco G, Groce A, Cha SK (2021) SMARTIAN: enhancing smart contract fuzzing
with static and dynamic data-flow analyses. In: ASE. IEEE, pp 227-239

Corporation M (2020) The z3 theorem prover. [EB/OL]. https://github.com/Z3Prover/z3. Accessed 1 May
2021

@ Springer


https://beosin.com/#/
https://github.com/cornellblockchain/bamboo
https://github.com/cornellblockchain/bamboo
https://github.com/Z3Prover/z3

197 Page 48 of 52 Empir Software Eng (2022) 27:197

DappHub (2019) Formal verification of multicollateral dai in the k framework. [EB/OL]. https://github.com/
dapphub/k-dss/. 1 Accessed May 2021

Durieux T, Ferreira JF, Abreu R, Cruz P (2020) Empirical review of automated analysis tools on 47, 587
ethereum smart contracts. In: ICSE. ACM, pp 530-541

Etherscan (2017) Contracts with verified source codes only. [EB/OL]. https://etherscan.io/contracts Verified.
Accessed 1 May 2021

Feist J, Grieco G, Groce A (2019) Slither: a static analysis framework for smart contracts. In: WET-
SEB@ICSE. IEEE/ACM, pp 8-15

Foundation E (2020) The solidity contract-oriented programming language. [EB/OL]. https://github.com/
ethereum/solidity. Accessed 1 May 2021

Frank J, Aschermann C, Holz T (2020) ETHBMC: a bounded model checker for smart contracts. In: USENIX
Security symposium. USENIX Association, pp 2757-2774

Grishchenko I, Maffei M, Schneidewind C (2018a) Ethertrust: sound static analysis of ethereum bytecode.
Technische Universitdt Wien. Tech Rep

Grishchenko I, Maffei M, Schneidewind C (2018b) Foundations and tools for the static analysis of ethereum
smart contracts. In: CAV (1), vol 10981. Springer. Lecture Notes in Computer Science, pp 51-78

Grishchenko I, Maffei M, Schneidewind C (2018c) A semantic framework for the security analysis
of ethereum smart contracts. In: POST. Lecture Notes in Computer Science, vol 10804. Springer,
pp 243-269

He J, Balunovic M, Ambroladze N, Tsankov P, Vechev MT (2019) Learning to fuzz from symbolic execution
with application to smart contracts. In: CCS. ACM, pp 531-548

Hildenbrandt E, Saxena M, Rodrigues N, Zhu X, Daian P, Guth D, Moore BM, Park D, Zhang Y, Stefanescu
A, Rosu G (2018) KEVM: a complete formal semantics of the ethereum virtual machine. In: CSF. IEEE
Computer Society, pp 204-217

Jiao J, Kan S, Lin S, Sandn D, Liu Y, Sun J (2020) Semantic understanding of smart contracts: Executable
operational semantics of solidity. In: IEEE S&P. IEEE, pp 1695-1712

Kalra S, Goel S, Dhawan M, Sharma S (2018) ZEUS: analyzing safety of smart contracts. In: NDSS. The
Internet Society

Kasampalis T, Guth D, Moore B, Serbanuta T, Serbanuta V, Filaretti D, Rosu G, Johnson R (2018) Iele: an
intermediate-level blockchain language designed and implemented using formal semantics. Tech. rep.

Krupp J, Rossow C (2018) Teether: gnawing at ethereum to automatically exploit smart contracts. In:
USENIX security symposium. USENIX Association, pp 1317-1333

Liu C, Liu H, Cao Z, Chen Z, Chen B, Roscoe B (2018) Reguard: finding reentrancy bugs in smart contracts.
In: ICSE. ACM, pp 65-68

Lu N, Wang B, Zhang Y, Shi W, Esposito C (2019) Neucheck: a more practical ethereum smart contract
security analysis tool. Softw: Pract Exp

Luu L, Chu D, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: CCS. ACM,
pp 254-269

Nguyen TD, Pham LH, Sun J, Lin Y, Minh QT (2020) sfuzz: an efficient adaptive fuzzer for solidity smart
contracts. In: ICSE. ACM, pp 778-788

Nipkow T, Paulson LC, Wenzel M (2283) Isabelle/HOL—a proof assistant for higher-order logic. In: Lecture
Notes in Computer Science. Springer

Permenev A, Dimitrov D, Tsankov P, Drachsler-Cohen D, Vechev MT (2020) Verx: safety verification of
smart contracts. In: IEEE symposium on security and privacy. IEEE, pp 1661-1677

Reis JS, Crocker PA, de Sousa SM (2020) Tezla, an intermediate representation for static analysis of michel-
son smart contracts. In: FMBC@CAV, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, OASIcs,
vol 84, pp 4:1-4:12

Rodler M, Li W, Karame GO, Davi L (2019) Sereum: protecting existing smart contracts against re-entrancy
attacks. In: NDSS. The Internet Society

Schneidewind C, Grishchenko I, Scherer M, Maffei M (2020) Ethor: practical and provably sound static
analysis of ethereum smart contracts. In: CCS. ACM, pp 621-640

Sergey I, Hobor A (2017) A concurrent perspective on smart contracts. In: Financial cryptography
workshops. Lecture Notes In Computer Science, vol 10323. Springer, pp 478-493

Sergey I, Kumar A, Hobor A (2018) Scilla: a smart contract intermediate-level language. CoRR.
arXiv:1801.00687

Software C (2020) Security analysis tool for evm bytecode. [EB/OL]. https://github.com/ConsenSys/mythril.
Accessed 1 May 2021

Solidity (2020) Solidity v0.5.0 breaking changes. [EB/OL]. https://docs.soliditylang.org/en/v0.5.0/
050-breaking-changes.html. Accessed 1 May 2021

SRI Lab EZ (2020) Securify v2.0. [EB/OL]. https://github.com/eth-sri/securify2. Accessed 1 May 2021

@ Springer


https://github.com/dapphub/k-dss/
https://github.com/dapphub/k-dss/
https://etherscan.io/contractsVerified
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
http://arxiv.org/abs/1801.00687
https://github.com/ConsenSys/mythril
https://docs.soliditylang.org/en/v0.5.0/050-breaking-changes.html
https://docs.soliditylang.org/en/v0.5.0/050-breaking-changes.html
https://github.com/eth-sri/securify2

Empir Software Eng (2022) 27:197 Page 49 of 52 197

Team V (2020) Vyper documentation. [EB/OL]. https://vyper.readthedocs.io/en/latest/. Accessed 1 May
2021

Tezos (2020) Michelson: the language of smart contracts in dune. [EB/OL]. https://www.liquidity-lang.org/
doc/reference/michelson.html. Accessed 1 May 2021

Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y (2018)
Smartcheck: static analysis of ethereum smart contracts. In: WETSEB@ICSE. ACM, pp 9-16

Torres CF, Schiitte J, State R (2018) Osiris: hunting for integer bugs in ethereum smart contracts. In: ACSAC.
ACM, pp 664-676

Tsankov P, Dan AM, Drachsler-Cohen D, Gervais A, Biinzli F, Vechev MT (2018) Securify: practical
security analysis of smart contracts. In: CCS. ACM, pp 67-82

Wood G et al (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper 151(2014):1-32

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Zhaoxuan Li is a Ph.D. student in State Key Laboratory of Infor-
mation Security (SKLOIS), Institute of Information Engineering
(IIE), Chinese Academy of Sciences (CAS), Beijing, China. His
research interests include blockchain security, formal methods, and
privacy-preserving.

Siqi Lu is a lecturer and a Ph.D. student at Information Engineering
University, Zhengzhou, China. He obtained M.Sc. in Cryptogra-
phy from Information Engineering University, Zhengzhou, China, in
2014. His research interests include formal methods, cryptographic
protocol, and big data security.

@ Springer


https://vyper.readthedocs.io/en/latest/
https://www.liquidity-lang.org/doc/reference/michelson.html
https://www.liquidity-lang.org/doc/reference/michelson.html

197 Page 50 of 52

Empir Software Eng (2022) 27:197

@ Springer

Rui Zhang is an associate researcher with SKLOIS, IIE, CAS, China.
She received the Ph.D degree in information security from Beijing
Jiaotong University, China, in 2011. She was a post-doctor in Institute
of Software, CAS from 2011 to 2013. She was a visiting scholar in
Georgia Institute of Technology from 2009 to 2010 and 2018 to 2019.
She has published more than 40 technical papers in international
journals and conference proceedings. Her research interests include
blockchain security, security protocol, and applied cryptography.

Rui Xue is currently a research professor and vice director with the
SKLOIS, IIE, CAS. He is a member of the IEEE, and a member of
the ACM. He serves the vice director member of security protocols
association in Chinese Association for Cryptologic Research. He has
published more than 150 papers in popular journals and international
conferences. His research interests include information security and
privacy in data and information systems, with a focus on public-key
encryption and cryptographic protocols.

Wengiu Ma is an M.D. student in SKLOIS, IIE, CAS, Beijing, China.
Her research interests include cryptographic protocols and blockchain
security.



Empir Software Eng (2022) 27:197

Page 510f 52 197

Rujin Liang is an M.D. student in Information Engineering Univer-
sity, Zhengzhou, China. He obtained B.Sc. in Cryptography from
Information Engineering University in 2020. His research interests
include formal methods and blockchain security.

Ziming Zhao is an M.D. student in Zhejiang University, Hangzhou,
China. His research interests include machine learning, traffic identi-
fication, and privacy-preserving.

Sheng Gao is currently an Associate Professor with the School
of Information, Central University of Finance and Economics. He
received a Ph.D. degree in computer science and technology from
Xidian University in 2014. He is a member of the IEEE. He has
published over 30 articles in refereed international journals and con-
ferences. His current research interests include data security, privacy
computing, and blockchain technology.

@ Springer



197 Page 52 of 52 Empir Software Eng (2022) 27:197

Affiliations

Zhaoxuan Li'?2 - Sigi Lu3>* . Rui Zhang"? - Rui Xue'? - Wengqiu Ma' - Rujin Liang3* .
Ziming Zhao® - Sheng Gao®

Zhaoxuan Li
lizhaoxuan@iie.ac.cn

Rui Zhang
zhangrui @iie.ac.cn

Rui Xue
xuerui@iie.ac.cn

Wengqiu Ma
mawengiu@iie.ac.cn
Rujin Liang
coderlrj@163.com

Ziming Zhao
zhaoziming @zju.edu.cn

Sheng Gao
sgao@cufe.edu.cn

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, 100093, China

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100049, China
Information Engineering University, Zhengzhou, 450001, China

Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, 450001, China

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027,
China
School of Information, Central University of Finance and Economics, Beijing, 100081, China

@ Springer


mailto: lizhaoxuan@iie.ac.cn
mailto: zhangrui@iie.ac.cn
mailto: xuerui@iie.ac.cn
mailto: mawenqiu@iie.ac.cn
mailto: coderlrj@163.com
mailto: zhaoziming@zju.edu.cn
mailto: sgao@cufe.edu.cn

	SmartFast: an accurate and robust formal analysis tool for Ethereum smart contracts
	Abstract
	Introduction
	State-of-the-Art (SOTA) Analysis Tools
	Key Challenges
	Contributions



	Preliminaries and Motivating Examples
	Smart Contracts in Ethereum
	Intermediate Representation and Pattern Detection
	Pattern Detection

	Adversary Tools
	Motivating Examples
	Reentrancy with Ether (reentrancy-eth)
	Right-to-Left-Override (rtlo)
	Lock Account Assets (locked-ether)
	Transaction Origin Address (tx-origin)
	Wrong Shift Parameters (shift-parameter-mixup)
	Shadowed Built-in Elements (shadowing-builtin)
	Non-compliant Signature (signature-malleability)
	Timestamp Dependency (timestamp)
	Useless Code (code-no-effects)



	Vulnerability Assessment Model
	Vulnerability Assessment Method
	Examples of Vulnerability Assessment
	Performance of the SOTA Tools in Detecting Vulnerabilities

	Design of SmartFast
	Overview
	SmartIR
	XML Form
	IR Form
	IR-SSA Form
	Advantages of SmartIR over Other IR

	Pattern Verification/Matching
	Xpath Matching for XML Form
	Command Execution for IR/IR-SSA Form


	Implementation
	Importer
	Converter
	Matcher
	Integrator
	Exporter



	Evaluation Result
	Experimental Setup
	Objectives
	Evaluation Measures
	DataSets


	Precision of SmartFast (RQ1)
	Robustness of SmartFast (RQ2)
	Vulnerabilities in Production Smart Contracts (RQ3)
	Execution Overhead of SmartFast (RQ4)
	Authenticity of SmartFast (RQ5)
	Detection of integer-overflow Vulnerabilities
	Detection of reentrancy-eth Vulnerabilities
	Detection of shadowing-state Vulnerabilities
	Detection of erc20-approve Vulnerabilities
	Detection of locked-ether Vulnerabilities
	Detection of uninitialized-state Vulnerabilities
	Detection of unused-state Optimizations
	The Dao Vulnerability Incident
	The parity-multisig-bug Vulnerability Incident for the Parity Wallet
	The Second Parity Wallet Vulnerability Incident
	The integer-overflow Vulnerability Incident for the SMT Contract
	The Block Parameters Vulnerability Incident for the FOMO3D Contract



	Deep Insights of the Correctness and Effectiveness
	Correctness Analysis
	Effectiveness Analysis

	Discussion
	The Advantages of SmartFast
	The Limitation of SmartFast
	The Improvement of SmartFast
	The Application Prospect of SmartFast



	Related Work
	Dynamic Analysis
	Static Analysis
	Detection Based on EVM Bytecode
	Detection Based on Solidity Source Code



	Conclusion and Outlook
	References
	Affiliations




