
Optimal Hub Placement and Deadlock-Free Routing
for Payment Channel Network Scalability

Lingxiao Yang∗, Xuewen Dong∗,�, Sheng Gao†, Qiang Qu‡, Xiaodong Zhang∗, Wensheng Tian§, Yulong Shen∗
∗School of Computer Science and Technology, Xidian University, Xi’an, China,

lxyang@stu.xidian.edu.cn, {xwdong, zhangxiaodong}@xidian.edu.cn, ylshen@mail.xidian.edu.cn
†School of Information, Central University of Finance and Economics, Beijing, China. sgao@cufe.edu.cn

‡Shenzhen Institute of Advanced Techbology, Chinese Academy of Sciences;

Huawei Blockchain Lab, Huawei Cloud Tech Co., Ltd, Shenzhen, China. quqiang4@huawei.com
§Nanhu Lab, Jiaxing, China. tws@nanhulab.ac.cn

Abstract—As a promising implementation model of payment
channel network (PCN), payment channel hub (PCH) could
achieve high throughput by providing stable off-chain transac-
tions through powerful hubs. However, existing PCH schemes
assume hubs are preplaced in advance, not considering pay-
ment requests’ distribution and may affect network scalability,
especially network load balancing. In addition, current source
routing protocols with PCH allow each sender to make routing
decision on his/her own request, which may have a bad effect
on performance scalability (e.g., deadlock) for not considering
other senders’ requests. This paper proposes a novel multi-PCHs
solution with high scalability. First, we are the first to study
the PCH placement problem and propose optimal/approximation
solutions with load balancing for small-scale and large-scale
scenarios, by trading off communication costs among participants
and turning the original NP-hard problem into a mixed-integer
linear programming (MILP) problem solving by supermodular
techniques. Then, on global network states and local directly
connected clients’ requests, a routing protocol is designed for
each PCH with a dynamic adjustment strategy on request pro-
cessing rates, enabling high-performance deadlock-free routing.
Extensive experiments show that our work can effectively balance
the network load, and improve the performance on throughput
by 29.3% on average compared with state-of-the-arts.

Index Terms—Payment Channel Network, Placement, Routing,
Scalability.

I. INTRODUCTION

Cryptocurrencies are gaining popularity in the financial

ecosystem. However, the scalability issues of their underlying

blockchain technology are still challenging. Since each trans-

action needs to be confirmed by the consensus mechanism,

this can take several minutes to hours. Instead of continually

improving the design of the consensus mechanism, a leading

layer-2 proposal for addressing the scalability challenge relies

on off-chain payment channels [1], [2]. The core idea is to

move mass transactions submitted on-chain to off-chain and

execute them securely using a locking mechanism. Only the

key steps (e.g., resolving disputes, opening/closing channels)

are put on-chain for confirmation.

Multiple payment channels among nodes constitute a pay-
ment channel network (PCN). Two nodes without the direct

payment channel can conduct off-chain transactions through

intermediaries routing. While appealing, PCNs raise the issue

� Xuewen Dong is the corresponding author.

of finding paths by the senders and maintaining the network

topology. Furthermore, the collateral deposited in a channel

cannot be used anywhere else in a bounded time. The above

reasons prompted the design of TumblerBit [3], which first

proposes the payment channel hubs.

Payment channel hubs (PCHs) are the untrusted interme-
diaries that allow participants to make fast, anonymous, off-
chain payments [3]. The basic idea is that each participant

opens a channel with a PCH. The PCH mediates payments

between senders and recipients and gains a fee. Although this

scheme sacrifices the fully decentralized nature of blockchain,

it significantly improves the performance on the premise of

verifiable security [4]. Blockchain has been compromising

decentralization in the increasingly urgent need for high

availability. For example, EOS [5] has compromised from

decentralization to multi-centralization.

Motivation. With the increase in usage frequency, the overall

load of the PCN rises rapidly, and load imbalance phenomena

happen gradually. When the blockchain community1 decides to

upgrade or design a new PCN for large-scale usage scenarios,

the overall load of the PCN system should be considered. The

inappropriate placement of PCHs in PCNs can easily lead

to an unbalanced network communication load. However, as

shown in Table I, the existing scalable schemes (e.g., [1], [2],

[6]–[10]) mainly study the improvement of routing strategies to

improve performance. The placement problem has never been

discussed, which is the first flaw. The current source routing

they adopted requires each sender to maintain a complete PCN

topology and independently compute routes according to his/her

own requests [9], [10]. In large-scale networks, the senders’

performance is severely challenged, and without coordinating

other requests can easily cause deadlocks. Existing PCHs

(e.g., [3], [4], [11], [12]) inherit the above source routing

flaw and design complex cryptographic primitives to provide

unlinkability [3], [4] for off-chain payments to obfuscate the

relationship between transaction parties, with limited scalability

improvements [11], [12], which is the second flaw.

1Like all public blockchains, our solution is also community-autonomous.
This means that all members have equal rights in decision-making, which
requires a 67% majority approval.

692

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00087

TABLE I
STATE-OF-THE-ART PCN SCALABLE SCHEMES

Properties

Literatures Lighting [1], Raidon [2]

Flare [6], Sprites (FC ’19) [7]
REVIVE (CCS ’17) [8] Spider (NSDI ’20) [9] Flash (CoNEXT ’19) [10]

TumbleBit (NDSS ’17) [3]

A2L (S&P ’21) [4]

Perun (S&P ’19) [11]

Commit-Chains [12]

Splicer

(This work)

Improving throughput

Support large transactions

Payment channel balance

Deadlock-free routing

Transaction unlinkability

Optimal hub placement

This paper presents Splicer, a novel multi-PCHs solution

with high scalability while inheriting unlinkability. In particular,

we propose the PCHs called the smooth nodes for routing

computations. The scalability of Splicer is two-fold: (i) Our

network scale is scalable, allowing more clients to access

the system through a variable number of PCHs. Meanwhile,

we study the PCH placement problem to achieve optimal

network communication load balancing. (ii) Splicer provides

performance scalability. We design a rate-based routing protocol

to perform multi-path payments by splitting transactions,

achieving a high transaction success ratio and throughput. It

proves that the network funds flow smoothly and the network

is nearly deadlock-free. The insight of Splicer is to seek a new

tradeoff between decentralization and scalability for PCNs2.

Challenges. Splicer addresses several challenges: (i) PCH
placement modeling and solving. Since the clients in PCNs are

scattered geographically, the desired properties are challenging

to define formally. In addition, the method of solving the model

may change as the scale of PCNs increases. (ii) A scalable
routing protocol for PCHs. Naive approaches (e.g., shortest-

path routing) may lead to underutilizing funds or deadlock

in some channels because the transaction always flows on

the shortest paths. Additionally, previous instant and atomic

routing [1], [2] would cause the payment value to be limited

by channel funds.

Contributions. We make the following contributions:

• Globally optimal PCH placement. Multiple PCHs make

distributed routing computations for client payment requests

to balance the network load. We model the PCH placement

problem to minimize the communication delay and overhead.

Besides, we propose two solutions for the placement opti-

mization problem in small-scale and large-scale networks.

• Deadlock-free routing protocol. We design a scalable rate-

based routing mechanism for the multiple PCHs, allowing

large-value transactions to be completed on low-capacity

channels in multi-path and enabling high-throughput without

disrupting the balance of channel funds. Additionally, we

consider congestion control to adjust the transaction flow

rates in the PCNs further.

• Evaluation. We implement Splicer using Lightning Net-

work Daemon (LND) testnet [13]. We simulate the PCHs

placement model and conduct extensive experiments to

evaluate the performance of Splicer. The results show that

Splicer can effectively balance the network load, and improve

the performance on transaction success ratio by 42% and

throughput by 29.3% on average compared with the state-

of-the-arts.

2Our system name Splicer is derived from this insight, which rationally
connects the clients in PCNs with multiple PCHs.

II. PRELIMINARIES

A. Payment Channel Networks

Fig. 1(a) shows an example of payment channel networks

in which (A,C) and (C,B) have established a bidirectional

payment channel, respectively. Each direction of the bidirec-

tional payment channels has deposited ten tokens. So a virtual

payment channel [11] is formed between A and B. C relays

the payment if A wants to send five tokens to B. Thus two

transactions occur, A to C and C to B. As an incentive to

participate, C receives a forwarding fee. A key challenge

is ensuring that C forwards the correct amount of tokens.

Thus, the cryptographic hash time lock contract (HTLC) [1]

is proposed to guarantee that C can get the tokens paid by A
on the channel (A,C) only after C has successfully paid to

B within a bounded time in the channel (C,B).

C

BA

(a) A simple PCN.

C

BA

2

2

1

(b) The initial state.

C

BA

2

2

1

(c) A deadlock at C.

Fig. 1. Examples illustrating the PCNs.

B. Local Deadlocks in PCNs

To illustrate the local deadlocks in PCNs, we consider an

initial state in Fig. 1(b) that A and C transfer funds to B at

a rate of 1 and 2 tokens/sec, respectively. B transfers funds

to A at a rate of 2 tokens/sec. It is noted that the payment

rates we specify are not balanced, which causes net funds

to flow out of C and into A and B. Payment channels are

balanced by ten tokens in each direction. We suppose that

the transactions only flow between A and B. The system can

achieve a total throughput of 2 tokens/sec only by allowing

A and B to transfer to the opposite at a rate of 1 token/sec.

But once the payments are executed as described in the initial

state, the system throughput ends up at zero. This is because

C sends B funds faster than its funds being replenished by

A, reducing its transferable funds to zero, as shown in Fig.

1(c). However, C needs positive funds to route transactions

between A and B. The transactions between A and B cannot

be processed, even though they have sufficient funds. Thus the

network goes into a deadlock state.

III. SPLICER: PROBLEM STATEMENT

A. System Model

Entities. There are two types of entities in Splicer:

• Clients are the end-users in PCNs who can send or receive

a payment. We expect the clients to be lightweight, allowing

mobile or IoT devices to make payments. Clients outsource

the payment routing computation to smooth nodes. Each

client interacts with a unique smooth node.

693

Sender 1

Sender 2

Sender N
PCH

Recipient 1

Recipient M

(a) Star-like topology.

Sender 1

Sender 2

Sender N

PCH 1
Recipient 1

Recipient 2

Recipient M

PCH 2

PCH Z

(b) Multi-star-like topology.

Fig. 2. PCH topologies.

• Smooth nodes process payment requests from clients by

running routing protocol. Each smooth node makes path

decisions for the current payment requests of its directly

linked clients. Besides, multiple smooth nodes form a key

management group (KMG) to create or retrieve keys with

any distributed key generate protocol [14].

Topology. Fig. 2(a) shows the star-like topology in state-of-

the-art PCHs [3], [4], [11]. A PCH opens payment channels

with multiple clients separately. Thus, clients need one-hop

routing for mutual payments through the intermediate PCH

[12]. As shown in Fig. 2(b), in Splicer we model the PCN with

a multi-star-like topology, in which the clients evenly connect

to the smooth nodes (PCHs). Fig. 2(b) shows an example where

the client consists of N senders and M recipients, and PCHs

include Z smooth nodes. We define the multi-star-like PCN

topology as follows.

Definition 1. (Multi-star-like PCN topology). In a PCN, there
are multiple PCHs connected directly or indirectly. The clients
trade with each other through the PCHs that are directly
connected to them.

Notice that the payment hub model has been widely adopted

in PCNs (e.g., [3], [4], [11], [12]). However, we are the first

to propose a multi-star-like PCN with multiple PCHs.

Workflow. A PCN can be modeled as a graph G = (V,E)
in which V denotes the set of nodes, and E denotes the set

of payment channels between them. VCLI ⊆ V denotes the

clients, and VSN ⊆ V denotes the smooth nodes, where VCLI =
V− VSN. As shown in Fig. 3, there is a payment from client

Ps to client Pr, Si and Sj are the smooth nodes to which they

are connected, for Ps, Pr ∈ VCLI and Si, Sj ∈ VSN. KMG

contains ι smooth nodes, where ι is a system parameter. We

now sketch the payment preparation and execution workflow.

a) Payment preparation: For simplicity, we omit the detailed

process of creating payment channels, and the channels’ initial

deposits are sufficient, similar to Ref. [15], [16]. Now Ps

establishes a secure communication via transport layer security

(TLS) protocol with Si, so do Pr and Sj . Then a payment

channel is created between Ps and Si, so do Pr and Sj . Next,

Ps initiates a payment request payreq to Si via the secure

channel so that Si knows the client has a new transaction to

execute. Then Si starts the payment initialization. Si creates

a fresh transaction id tid and obtains fresh (pktid, sktid) pair

from the KMG. Si sends tid and the corresponding public key

pktid to Ps, and Si keeps sktid private. Then Si generates the

initial state statetid := (tid, θtid), a tuple containing tid and a

boolean θtid indicating whether the transaction is completed.

A payment from to

Key management
group (KMG)

Key management
group (KMG) (2) exec

(1) ipu(1) ipu

(2) exec(2) exec
(3) Get k(3) Get k (3) Get k(3) Get k

(4) outp(4) outp (4) outp(4) outp

(2) exec

rP

rP

iS

kS

k+1S

jS

k+ι-1S

sP

sP

Fig. 3. Workflow in multi-hop working model.

b) Payment execution: We illustrate the steps of payment

execution in Fig. 3 as follows:

(1) To start the process of executing a transaction tid with

input inp which contains Dtid. Let Dtid = (Ps, Pr, valtid) denote

the payment demand of Ps, where valtid represents the payment

amount. Ps first computes inp = Enc(pktid, Dtid), then sends

to Si a message (tid, inp) and the payment funds.

(2-3) Si decrypts inp with sktid to obtain Dtid =
Dec(sktid, inp). Then the routing protocol splits the Dtid
into K transaction-units (TUs) Dtuid with fresh id tuid,

generates the corresponding states statei
tuid = (tuid, θituid), for

2 ≤ i ≤ K, and θtid =
∧

2≤i≤K θituid. From the KMG, Sj

obtains (pktuid, sktuid) pair. Si sends Enc(pktuid, Dtuid) to Sj ,

then Sj decrypts it with sktuid. Once Sj receives the funds

corresponding to Dtuid, it returns to Si an acknowledgment

ACKtuid via secure channel, with which Si updates the statei
tuid

as θituid = true. When all acknowledgments ACKtuid are

received, Si updates the statetid as θtid = true.

(4) Finally, Sj receives all TUs of Dtid, and sends the

payment funds to Pr at one time. Pr generates a successful

receipt acknowledgment ACKtid, which is finally forwarded to

Ps by the smooth nodes.

In fact, in the above workflow, any transaction initiator needs

to pay an additional forwarding fee to the intermediaries on

the routing path, which is used as a forwarding incentive for

smooth nodes, see §IV-D.

B. Trust, Communication and Threat Models

Trust model. Splicer is community-autonomous, and there

is a certain trust transference between entities. In Fig. 4, Splicer

runs a multiwinner voting algorithm (e.g., [17]) in the smart

contract that effectively allows all entities to fairly select a

smooth node candidate list in a long period. It can take into

account the two properties: (i) Excellence means the selected

candidates are “better” for outsourcing routing tasks (e.g.,

have more client connections, transaction funds, and lower

operational overhead). (ii) Diversity means that the candidate

positions are as diverse as possible. We leave the optimal

design of multiwinner voting for future work.

The first selected candidate list of smooth nodes temporarily

performs payment routing as actual PCHs. When the network

state is stable, the candidate smooth nodes run a smart contract

containing a placement optimization algorithm to determine

the actual PCHs (long term running). Notice that after the

distribution of transaction requests is stabilized in the network,

the overall distribution information of requests obtained by

694

���������	
���	���
������
�����

�
�����
�
�����

��������������
����������

�������������������������

���������
��������
�����

���������������
����������

��������
��������������

��
���

����������
��
���
����

!!! !!! !!!

�������� ���������� ����������� "��
	������������������

Fig. 4. System trust transference model.

each candidate PCH is consistent, and the actual PCHs finally

decided are consistent.

Fig. 4 shows that this process is accompanied by the removal

of redundant payment channels, thus reducing the complexity

of the network. Actual PCHs require pledging funds to a public

pool for access, and their behavior checks and balances each

other; if some PCHs appear malicious or colluding, they will

be identified by other PCHs. Splicer also provides the client

with a reporting and arbitration mechanism. The malicious

PCHs will be removed, and their deposit will be confiscated

as a punishment (the loss is greater than the profit). Then

new PCHs will be selected from the new candidate list to

supplement, so rational PCHs will not choose corruption.

We emphasize that sensitive information (e.g., node identity,

transaction content, routing data) is transmitted in ciphertext,

coupled with unlinkability, so the client does not need to worry

about privacy leakage.

Communication model. As shown in Fig. 5, we sketch

the communication process. Splicer runs under the bounded

synchronous communication setting. At the beginning of epoch

e+1, PCHs obtain and synchronize the final global information

of the last epoch, including clients’ states and network data (e.g.,

topology, channel state, payment flow rate, etc). Meanwhile,

after receiving directly connected clients’ local payment

requests, each PCH makes distributed routing decisions based

on the network data (final global information of epoch e) and its

clients’ new requests (local information of epoch e+1). Finally,

recipients generate the payment acknowledgments, which PCHs

forward to senders. Splicer loops the above process.

Threat model. Each PCH is rational and potentially ma-

licious, deviating from the protocol to obtain benefits. An

adversary may compromise a target PCH’s operating system

and network stack, which can arbitrarily drop, delay, and replay

messages. Since the adversary would not profit from corrupting

the PCH placement process, the adversary’s attack may only

cause the payment routing of some transactions to fail. However,

the failed transactions would be withdrawn by PCH without

causing losses to the client or affecting the system’s stability.

C. PCH Placement and Routing Problems

Placement problem. The core of placement problem is to

select the actual PCHs (fixed long-period running placement

optimization smart contract) in the smooth node candidate list

and make them install and run the PCH program for payment

routing. The placement optimization smart contract determines

the number of actual PCHs and their location in the network.

We emphasize that this is a community-autonomous process

and not a centralized decision. In long-term stable operation,

the actual PCHs do not change, unless the network is not in an

PCHs
Clients

(Senders)

 Send payment requests in epoch e+1

 Route payments in epoch e+1

Clients
(Recipients)

 Generate acknowledgements Forward acknowledgements

 obtain and synchronize the final global information of last epoch

 Make distributed routing decisions for requests based on network data of epoch e

Fig. 5. System communication process in epoch e+1.

optimal operating state after long-term operation (the result of

the placement optimization smart contract output changes) or a

malicious PCH is removed. In practice, the community weighs

the costs and benefits to determine when a new placement

problem should be addressed.

Since there are many geographically dispersed nodes in

the real PCNs, PCHs may be far from some clients, leading

to unstable connections or high communication delay and

overhead between them. We aim to place the PCHs in

proximity to the clients evenly, and all the clients have the

lowest average payment hops forwarded by them. PCHs are

physically distributed but logically polycentric and cooperative

in managing payment routing. While such a placement strategy

makes the distance between nodes shorter, it also considers

the costs of PCHs collecting statistics from the clients and

synchronizing between the PCHs. This creates a network load
tradeoff : (i) the PCHs should be near their routed clients

to reduce the communication delay and route management

overhead (management cost). (ii) they should be close to each

other to reduce the delay and overhead of synchronizing states

(synchronization cost). Thus the PCHs should be appropriately

placed in a PCN, leading to a placement problem. We are the

first to discuss the PCH placement problem in the PCNs, and

we further describe the details of the placement problem in

§IV-B and the solutions in §IV-C.

Routing problem. The existing routing solutions try to: (i)

reduce routing costs to improve throughput and (ii) rebalance

channel funds to improve routing performance. However, source

routing requires each sender to compute the routing paths,

which is limited in large-scale scenarios (Until April 11,

2023, the total number of nodes in the Lightning Network

is 16,427. This paper defines a local network with more than

3,000 nodes as a large-scale network). We need to design a

distributed routing decision protocol over multiple PCHs. Thus

we propose a rate-based routing mechanism inspired by the

ideas of packet-switching technology. Transactions are split

into multiple independently routed TUs by each PCH. Each

TU can transfer a few funds bounded by a Min-TU and a

Max-TU value at different rates. We emphasize that this multi-

path payment routing approach has proven to be feasible in

Spider [9]. Notice that it does not affect the confidentiality of

payments because each TU is encrypted with an independent

public key from the KMG. In addition, the intermediate nodes

of each TU routing path may be different, which confuses the

relationship between two-party of multiple original transactions

in PCNs. Thus, Splicer inherits the unlinkability of state-of-

the-art PCHs. It is more difficult for intermediaries to identify

sensitive information ciphertext. We elaborate on the rate-based

routing protocol in §IV-D.

695

Management

Cost

Synchronization

Cost

Tradeoff

Balance Cost

Fo
rm

al
ize

 C
os

ts
 T

ra
de

of
f

O
pt

im
iza

tio
n

So
lu

tio
ns

Small-scale

MILP

Large-scale

Supermodular

PCH Placement Problem Routing Protocol Design

Fo
rm

al
ize

 C
on

st
ra

in
ts

Demand

Balance

Capacity Fl
ow

 R
at

es
 C

on
tr

ol

Co
ng

es
tio

n
Co

nt
ro

l

Queue

WindowRouting

Price/Fee
Price-based Rates

Capacity

Price

Imbalance

Price

Distributed

Decision

Fig. 6. The overall structure of our design.

IV. SYSTEM DESIGN

A. Overview

The overall structure of our design is shown in Fig. 6. We

first consider the placement of smooth nodes. The placement

problem is to seek a tradeoff between routing management

and synchronization costs. Now we study the details of

the smooth nodes placement problem, formulating it as an

optimization problem with two costs tradeoff and translating it

into minimizing the balance cost. Then, we provide solutions in

two PCN scales for the transformed optimization problem. In a

small-scale network, we transform the placement problem into

a mixed-integer linear programming (MILP) problem to find

the optimal solution. We use supermodular function techniques

to find the approximate solution in a large-scale network.

Next, we study the details of routing protocol design for

smooth nodes. We first give the formal constraints of the routing

problem, including demand, capacity, and balance constraints.

Then we consider the transaction flow rate control based on

the routing price. We define the capacity and imbalance prices,

derive the routing price and fee through distributed decisions,

and obtain the price-based flow rates. Finally, we consider

congestion control during routing and design the waiting queue

and window to alleviate congestion.

B. Formalize the Placement Problem

We describe the long periodic election of smooth node

candidate list in the trust model of §III-B. We briefly present

the PCH placement problem in §III-C. Next, we further model

how to determine the actual PCHs in the candidate list.

To formally describe the network load tradeoff, we let two

binary variables xn, ymn ∈ {0, 1} denote whether a candidate

node n ∈ VSNC (VSNC denotes the set of candidate smooth

nodes) can be placed as a smooth node and whether a client

m ∈ VCLI is assigned to the smooth node n, respectively.

Thus, the vectors x and y show the placement and assignment

plans, respectively:

x = (xn ∈ {0, 1} : n ∈ VSNC), (1)

y = (ymn ∈ {0, 1} : m ∈ VCLI, n ∈ VSNC). (2)

A node n is not capable enough to be placed as a smooth

node (xn = 0, ∀n /∈ VSNC). Each client needs to be assigned

to a smooth node, and we require
∑

n∈VSNC
ymn = 1, ∀m ∈

VCLI. A node n must be placed as a smooth node so that client

m can be assigned (ymn ≤ xn, ∀m ∈ VCLI, n ∈ VSNC).

Let ζmn and δnl denote the management cost of assigning

a client m ∈ VCLI to a smooth node n ∈ VSNC, and the

synchronization cost between two smooth nodes n, l ∈ VSNC,

respectively. Notice that ζmn and δnl are local or edge-wise

parameters probed by candidate smooth nodes at the last long

period. Then the total management cost and synchronization

cost in the network can be expressed as

CM (y) =
∑

m∈VCLI

∑
n∈VSNC

ζmnymn, (3)

CS(x,y) =
∑

n∈VSNC

∑
l∈VSNC

xnxl(δnl

∑
m∈VCLI

ymn + εnl), (4)

where εnl denotes the constant cost in synchronization.

The tradeoff is transformed into a balance between the costs

shown in equations (3)-(4). Let ω ≥ 0 denote the weight value

between the two costs, and the balance cost can be stated as

CB(x,y) = CM (y) + ωCS(x,y). (5)

The PCH placement problem is shown as min CB(x,y),
where the constraints are formulas (1)-(2). The problem is

complex in that it contains discrete variables and a nonlinear

objective function (4) with cubic and quadratic terms, and is a

typical NP-hard problem [18].

C. Optimization Placement Problem Solutions

Small-scale optimal solution. We convert the placement

problem to a MILP problem to find the small-scale optimal

solution. The conversion is vital since after turning into a

problem with a linear objective function with constraints, it

can be solved easily by existing various commercial solvers.

We use standard linearization techniques to achieve this

conversion process. First, we introduce two vectors ϑ and ϕ
as the additional optimization variables

ϑ = (ϑnl ∈ {0, 1} : n, l ∈ VSNC), (6)

ϕ = (ϕnlm ∈ {0, 1} : n, l ∈ VSNC, m ∈ VCLI). (7)

Second, the linear constraints for ϑ and ϕ are as follows

ϑnl ≤ xn, ϑnl ≤ xl, ϑnl ≥ xn + xl − 1, n, l ∈ VSNC, (8)

ϕnlm ≤ ϑnl, ϕnlm ≤ ymn, ϕnlm ≥ ϑnl + ymn − 1,

n, l ∈ VSNC, m ∈ VCLI.
(9)

Where the constraints in (8) mean that if at least one xn and

xl are 0, ϑnl is 0; otherwise, it is 1. Similarly, the constraints

in (9) work on the same principle.

696

Third, we linearize the cost function (4) using the new

variables, and it can be converted to

ĈS(ϑ,ϕ) =
∑

n∈VSNC

∑
l∈VSNC

(
∑

m∈VCLI

δnlϕnlm + εnlϑnl). (10)

Finally, the MILP can be stated as min CM (y)+ωĈS(ϑ,ϕ),
where the constraints are formulas (1)-(2) and (8)-(9).

Therefore, the PCH placement problem has been converted

to a MILP problem and can be directly solved by existing

commercial solvers. The various solvers usually apply a

combination of the branch and bound method and the cutting-

plane method, which can solve the MILP problem quite fast

for the small-scale problem. However, our model involves

the payments of mobile or IoT devices, and the scale of the

PCNs may be enormous, leading to an extremely large MILP

problem, creating a bottleneck in the solvers’ computational

performance. Hence we overcome this problem by proposing

an approximation solution to solve the large-scale problem.

Large-scale approximation solution. Firstly, we introduce

a lemma that reveals the relationship between the placement

plan x and the assignment plan y.

Lemma 1. Given a placement plan x, for each m ∈ VCLI, n ∈
VSNC, the optimal assignment plan y can be expressed as

ymn =

⎧⎨
⎩
1, if n = argmin

n′∈VSNC:xn′=1

(ω
∑

l∈VSNC:xl=1

δn′l + ζmn′),

0, otherwise.
(11)

Proof. Assuming that there is an optimal assignment plan yo,
in which the client mo is assigned to the smooth node no.
Then there is another node nh �= no and nh = 1, let

ω
∑

l∈VSNC:xl=1

δnhl + ζmnh < ω
∑

l∈VSNC:xl=1

δnol + ζmno , (12)

which shows that if the client mo is reassigned to the

smooth node nh, the management cost reduces ζmno − ζmnh ,

and the synchronization cost reduces
∑

l∈VSNC:xl=1 δnol −∑
l∈VSNC:xl=1 δnhl. Thus the value of objective function CB

reduces ω
∑

l∈VSNC:xl=1 δnol+ζmno −ω
∑

l∈VSNC:xl=1 δnol−
ζmno > 0. However, this contradicts our assumption that yo

is an optimal assignment plan.

Lemma 1 indicates that it is easy to find the assignment

plan y for a given placement plan x, thus we concentrate on

optimizing the placement plan. Let Xn represent the placement

of a smooth node n (i.e., xn = 1), and the set of all possible

placements of the smooth node is shown as

S = (Xn : n ∈ VSNC), (13)

which means if and only if Xn ∈ X , a subset X ⊆ S shows

a placement plan x that xn = 1. Let xX denote the binary

representation of X , thus the balance cost objective function

CB can be denoted as a set of function f : 2S → R

f(X) = CB(xX , y(xX)), (14)

where y(xX) indicates the optimal assignment plan given the

smooth node placement plan xX based on equation (11).

Secondly, we consider a well-researched class of set func-

tions known as supermodular [19].

Definition 2. Given a finite set S , a set function f : 2S → R

is called supermodular if for all subsets A,B ⊆ S with A ⊆ B
and every element i ∈ S \ B it holds that

f(A ∪ {i})− f(A) ≤ f(B ∪ {i})− f(B), (15)

which states that when an element i is added to a set, the

marginal value rises with the expansion of the respective set.

Lemma 2. The set function f(X) is supermodular for the
case of uniform costs δnl = δn′l′ = δ, ∀n, l, n′, l′ ∈ VSNC.

The lemma 2 has been proved in [18]. Based on that,

the placement problem can be molded as minimizing a

supermodular function f .

Algorithm 1: Placement Approximation Algorithm

Input: Two initially solutions Xs
0 , Y s

0 , element ui

Output: Final solution Xs
z (or equivalently Y s

z)
1 for i = 1 to z do

// Maintain the two solutions until they
coincide

2 ai ← f(Xs
i−1 ∪ {ui})− f(Xs

i−1)
3 bi ← f(Y s

i−1 \ {ui})− f(Y s
i−1)

4 a′i ← max {ai, 0}, b′i ← max {bi, 0}
5 if a′i/(a

′
i + b′i)

� then
6 Xs

i ← Xs
i−1 ∪ {ui}, Y s

i ← Y s
i−1

7 else
8 Xs

i ← Xs
i−1, Y s

i ← Y s
i−1 \ {ui}

9 return Xs
z (or equivalently Y s

z)

10 � If a′i = b′i = 0, then a′i/(a
′
i + b′i) = 1

Thirdly, solving this kind of problem is equivalent to

addressing their submodular function maximization version.

Let fub denote an upper limit of the highest possible value of

f(X), the submodular function is f̂(X) = fub − f(X).
There are various approximation algorithms (e.g., [20], [21])

to maximize f̂(X), and an approximation bound ψ indicates

the ratio of the value of the approximate solution over the

optimal solution value is always at least ψ. The algorithm in

[21] provides the best approximation bound, which ψ = 1
2 . As

is outlined in Alg. 1, it yields in z = |VSNC| iterations, and

ui(1 ≤ i ≤ z) is an arbitrary element of set S . Two solutions

Xs and Y s initially set as Xs
0 ← ∅ and Y s

0 ← S. Lines 1-9
show as follows. At the ith iteration, the algorithm adds ui to

Xs
i−1 or removes ui from Y s

i−1 randomly and greedily based

on the marginal gain of each of the two options. Thus the

algorithm generates two random solutions Xs
i and Y s

i . After

z iterations, both solutions coincide (i.e., Xs
z = Y s

z), and it

is returned in line 9. Line 10 handles a special case in line 5

697

where a′i = b′i = 0. Lastly, based on the above, we can get the

approximate solution of the large-scale network instances.

D. Rate-Based Routing Protocol Design

The formal constraints. For a path p, let rp represent the

payment rate sent on p from the start to the end. We assume

that TUs are sent through a payment channel of capacity ca,b
from the smooth node a to another smooth node b at a rate

ra,b. Once payment is forwarded, it takes Δ time on average

to receive the TUs acknowledgment from the end, thus ra,bΔ
funds are locked in the channel. The capacity constraint on

the channel means that the average rate cannot exceed ca,b/Δ.

In addition, in order to ensure the channel fund balance, there

is a balance constraint that the one direction payment rate ra,b
needs to match the rate rb,a in the reverse direction. Otherwise,

the funds move to one end of the channel, and eventually, all

converge at one end, creating a local deadlock (see §II-B).

To ensure the full utilization of funds in channels, we

consider a common model of utility for making payments. The

logarithm of the total rate at which payments are sent from a

source represents the utility of the source [22]. Therefore, we

seek to maximize the total utility of whole source-destination

pairs subject to the above constraints as follows:

max
∑
s,e∈V

log(
∑

p∈Ps,e

rp) (16)

s.t.
∑

p∈Ps,e

rpΔ ≤ ds,e ∀s, e ∈ V (17)

ra,b + rb,a ≤ ca,b
Δ

∀(a, b) ∈ E (18)

|ra,b − rb,a| ≤ ε ∀(a, b) ∈ E (19)

rp ≥ 0 ∀p ∈ P, (20)

where s denotes the start and e denotes the end, Ps,e is the set

of all paths from s to e, ds,e is the demand from s to e. ca,b
denotes the capacity of the channel (a, b), and P denotes the

set of all paths. Formula (17) indicates the demand constraint,
ensuring the total flow of all paths is no more than the total

demand. Formula (18) and (19) are capacity and balance
constraints, respectively. The balance constraint is harsh in the

ideal case (i.e., the system parameter ε = 0), but we intend

that the flow rates in both channel directions tend towards

equilibrium in practice (i.e., ε is small enough).

Distributed routing decisions. Each PCH makes distributed

routing (incremental) decisions for payments based on the

network data of the last epoch and its clients’ requests in the

current epoch. Based on primal-dual decomposition techniques

[23], we consider the optimization problem for a generic

utility function U(
∑

p∈Ps,e
rp). Lagrangian decomposition can

naturally decompose this linear programming problem into

separate subproblems [24]. A solution is to compute the flow

rates that should be maintained on each path. We set the routing
price in both directions of each channel, and the PCHs adjust

the prices to control the flow rates of TUs. Meanwhile, the

routing price is used as the forwarding fee to incentivize PCHs.

The routing protocol is shown in Alg. 2. (Lines 1-9) There

is decrypted a payment demand Ds,e, the smooth node splits it

into k packets of TUs di (we limit Min-TU ≤ |di| ≤ Max-TU
to control the number of split TUs), |Ds,e| =

∑k
i=1 |di|, and

there are k paths {pi}1≤i≤k ∈ Ps,e (see §V-D for a discussion

of choosing different paths). For brevity, we only consider

a channel (a, b) in path pi, (a, b) ∈ pi. Let λa,b denote the

capacity price that indicates the total rate of arrival transactions

exceeds the capacity, and let μa,b and μb,a denote the imbalance
price that represents the imbalance of rate in the two directions,

respectively. These three prices are updated every τ seconds to

keep the capacity and balance constraints from being violated.

Let na, nb denote the funds required to maintain the flow rates

at a and b. The capacity price λa,b is updated as

λa,b(t+ 1) = λa,b(t) + κ(na(t) + nb(t)− ca,b), (21)

where κ is a system parameter used to control the rate of price

change. Any required funds excessing the capacity ca,b cause

the capacity price λa,b to rise, which indicates that the rates

via a, b need to be reduced and vice-versa.

Let ma,mb represent the TUs arriving at a and b in the last

period, respectively. The imbalance price μb,a is updated as

μa,b(t+ 1) = μa,b(t) + η(ma(t)−mb(t)), (22)

where η is a system parameter. Any funds arriving in (a, b)
direction more than (b, a) direction cause the imbalance price

μa,b to increase and μb,a to decrease, which means that the

rates routing along (a, b) need to be throttled and vice-versa.

Based on observations of routing prices and node feedbacks,

the smooth nodes run a multi-path routing protocol to control

the rates at which payments are transferred. Probes [10] are

sent periodically every τ seconds on each path to measure the

above two prices. The routing price of the channel (a, b) is

ξa,b = 2λa,b + μa,b − μb,a, (23)

the forwarding fee that a needs to pay to b is

feea,b = Tfee(2λa,b + μa,b − μb,a), (24)

where Tfee(0 < Tfee < 1) is a systematic threshold parameter.

Thus, the total routing price of a path p is

�p = (1 + Tfee)
∑

(a,b)∈p

ξa,b, (25)

which indicates the total amount of excess and imbalance

demands. Then the smooth node sends a probe on path p,

which sums the price ξa,b of each channel (a, b) on p. Based

on the routing price �p from the most recently received probe,

the rate rp is updated as

698

rp(t+ 1) = rp(t) + α(U ′(r)− �p(t)), (26)

where α is a system parameter. Therefore, the sending rate on

a path is adjusted reasonably according to the routing price.

Algorithm 2: Distributed Routing Decision Protocol

Input: Decrypted demand Ds,e, rate rpi , required funds na, nb,
arrived TUs ma, mb

Output: Routing rates rpi (1 ≤ i ≤ k)
1 Split the demand Ds,e into di on path pi (1 ≤ i ≤ k).
2 for i = 1 to k do
3 for ∀ payment channel (a, b) on path pi do

// Update the routing rates
4 λa,b ← λa,b + κ(na + nb − ca,b)
5 μa,b ← μa,b + η(ma −mb)
6 ξa,b ← 2λa,b + μa,b − μb,a

// Forwarding fee
7 feea,b ← Tfee(2λa,b + μa,b − μb,a)

// Routing price of the path pi
8 �pi ← (1 + Tfee)

∑
(a,b)∈pi

ξa,b
9 rpi ← rpi + α(U ′(r)− �pi)

// Congestion control
10 if rpi > rprocessa,b or Fa,b < |di| then
11 qamount

a,b ← di

12 tdelaypi ← Smooth nodes monitor

13 if tdelaypi > T then
14 d∗i ← di

15 if d∗i is aborted then
16 wpi ← wpi − β

17 if qamount
a,b < wpi and di is transmitted then

18 wpi ← wpi +
γ∑

p′
i
∈Ps,e

wp′
i

19 return rpi

Congestion control (Lines 10-18). We consider that this

rate-based approach may cause congestion of TUs, so we use

the waiting queue and window to control congestion. Whenever

congestion occurs, intermediate hubs in the path queue up the

TUs, representing a capacity or balance constraint violation.

So the smooth nodes need to use a congestion control protocol

to detect capacity and imbalance violations to control queues

by adjusting the sending rates in channels.
The congestion controller has two basic properties to achieve

both efficiency and balanced rates. (i) It should try to keep the

queue not empty, which indicates that the channel capacity is

being used efficiently. (ii) It should keep the queues bounded,

which means that the flow rate of each path can not exceed

capacity or be imbalanced. There are some congestion control

algorithms [25] that satisfy the two properties and can be

adapted for PCNs. Now we describe the protocol briefly:
If the rate rpi

exceeds the upper limited rate rprocessa,b that

the channel (a, b) can process, or the demand |di| exceeds

the current funds in (a → b) direction Fa,b, then the protocol

goes to the congestion control part. (i) Let qamount
a,b denote

the amount of TUs pending in queue qa,b. The queuing delay

tdelayp on path p is monitored by smooth nodes, and if it

exceeds the pre-determined threshold T , the packet di is marked

as d∗i . Once a TU is already marked, hubs do not process

the packet and merely forward it. When the recipient sends

back an acknowledgment with the marked field appropriately

set, hubs forward it back to the sender. (ii) Based on the

observations of congestion in the network, smooth nodes control

the payments rates transferred in the channels and choose a

set of k paths to route TUs from s to e. (iii) The window size

wp represents the maximum of unfinished TUs on path p. The

smooth nodes maintain the window size for every candidate

path to a destination, which indirectly controls the flow rate of

TUs on the path. The smooth nodes keep track of unserved or

aborted TUs on the paths. New TUs can be transmitted on path

p only if the total number of TUs to be processed does not

exceed wp. On a path p from s to e, the window is adjusted as

wp (t+ 1) = wp (t)− β, (27)

wp (t+ 1) = wp (t) +
γ∑

p′∈Ps,e
wp′

, (28)

where equation (27) means the marked packets fail to complete

the payment within the deadline, and the senders choose to

cancel the payment, and equation (28) means the unmarked

packets are transmitted. The positive constants β and γ denote

the factors that the window size decreases and increases.

Notice that although Spider [9] uses a similar multi-path

payment model, the main differences of Splicer are: (i) Splicer

considers forwarding costs, though the fee model is different

from that of the Lightning Network in Spider. (ii) Besides

congestion control, Splicer also provides rate control as to

minimize the capacity and imbalance violations in the network.

(iii) Splicer’s route computation is outsourced to PCHs instead

of being processed by end-users. In the next section, we

evaluate the performance of such an optimized Splicer vs.

Spider solution.

V. PERFORMANCE EVALUATION

A. Experiment Setup

Our evaluation consists of a simulation using MATLAB

and full implementation of the Lightning Network Daemon

(LND) testnet. We model the PCN in two scales, a small-scale

network (100 nodes) and a large-scale network (3000 nodes).

Our modified LND is deployed on the machine with a six-core

i7-9750H processor working at 2.6 GHz, 32 GB of RAM,

500 GB of SSD, and a 10 Gbps network interface. Referring

to Spider’s evaluation benchmark, the channel connections

between nodes are generated by ROLL [26] based on the

Watts-Strogatz small-world model. Following the heavy-tailed

distribution of the real-world dataset on the lightning channel

size [27], funds are set on each side of the channels. The

directional distribution of each transaction is generated on

our processed Lightning Network real-world dataset, and the

transaction value is generated in the same credit card dataset

[28] adopted by Spider. Notice that we have confirmed that

these transactions are guaranteed to cause some local deadlocks

and contain large-value transactions that the Lightning Network

cannot handle.

699

(a) Influence of the channel size (b) Influence of the transaction size (c) Influence of the update time (d) Normalized throughput

Fig. 7. The comparison between Splicer and other schemes under different metrics in small-scale networks.

(a) Influence of the channel size (b) Influence of the transaction size (c) Influence of the update time (d) Normalized throughput

Fig. 8. The comparison between Splicer and other schemes under different metrics in large-scale networks.

Parameter settings. The minimum, average, and median

channel sizes are 10, 403, and 152 tokens. The transaction

timeout is 3 seconds, the Min-TU is 1 token, and the Max-TU
is 4 token. The number k of multiple paths is 5. We set manage-

ment cost ζmn = 0.02 · hopsmn, and the synchronization cost

δnl = 0.01·hopsnl, εnl = 0.05·hopsnl, where hops represents

the number of hops in the communication path between nodes.

In congestion control, we set the queue size of each channel

as 8000 tokens. The factors of the window size β and γ are

10 and 0.1, respectively. The update time τ = 200 ms. The

threshold T of delay in the queue is 400 ms.

B. Performance of Splicer

We study the performance of Splicer under different metrics

compared with different schemes. As shown in Fig. 7 and Fig.

8, Splicer consistently outperforms other schemes in small and

large network scales. Spider [9] is a multi-path source routing

scheme in which each sender decides the routes. Flash [10]

is also based on source routing, using a modified max-flow

algorithm to find paths for large payments, and routing small

payments randomly through precomputed paths. Landmark
routing is adopted in many prior PCN routing schemes [6],

[29], [30]. Each sender computes the shortest path to the well-

connected landmark nodes, and then the landmark nodes route

to the destination in k distinct shortest paths. The A2L [4] is

the state-of-the-art PCH that focuses on providing unlinkability.

The results are as follows:

Transaction success ratio (TSR) means the number of com-

pleted transactions over the number of generated transactions.

A high value of TSR indicates the stability of the model, i.e.,

the ability to handle transaction deadlocks and balance the

network load. Fig. 7(a) and 8(a) show the TSR of Splicer

is an average of 53.4% higher than the other four schemes.

Combining the Fig. 7(b) and 8(b), there is also a considerable

increase (49.1%) in the TSR as the transaction size varies. These

results demonstrate that the PCHs distributed routing decision

protocol can improve the TSR. We note that the improvement

of Spider is more obvious under the large-scale networks. This

feature benefits hubs’ deployment because hubs perform many

routes, have larger capital, and thus may have a larger channel

size. Fig. 7(c) and 8(c) show the TSR under the influence of

update time τ in different schemes. The results show that the

TSR of Splicer is stable above 90% with the increase of update

time, which is slightly higher (5% and 10.5%, respectively)

than Spider. Because Spider also adopts a multi-path routing

strategy, reducing the possibility of deadlocks, the TSR is

high when the channel size is appropriate. In contrast, the

TSR of A2L decreased significantly, and Splicer increased by

26% and 39%, respectively. However, Spider handles source

routing computations at the end-users, which is limited by the

performance of a single machine, so the TSR is lower than

Splicer, especially with large-scale networks. Because A2L’s

complex cryptographic primitives reduce scalability, the overall

average improvement in TSR for Splicer is 42%, which proves

that the network funds flow smoothly, almost without deadlock.

Normalized throughput is the total value of payments

completed over the total value generated, normalized by the

maximum throughput. A high throughput demonstrates the

model’s ability for massive concurrent transactions and further

corroborates TSR to prove the stability of the model. Fig. 7(d)

and 8(d) show the normalized throughput of Splicer is an

average of 29.3% higher than the other four schemes. Splicer’s

throughput improvement is more significant in large-scale

networks (average 37.7%). Compared to Spider, the normalized

throughput of Splicer is 8.5% and 15.6% higher on average,

respectively. Compared with A2L, the improvement of Splicer

is more prominent, which are 28.2% and 48.4%, respectively.

As the increased update time, more and more transactions are

getting closer to the deadline, so the probability of transaction

failure is higher. Because A2L lacks a scalable routing strategy

design, it is more affected by this factor. Therefore, considering

the TSR and throughput, we choose the median of 200 ms as

the update time for Splicer.

The above results show that Splicer can significantly improve

performance scalability compared to state-of-the-arts. In large-

scale networks, the performance improvement effect of Splicer

is more significant. Additionally, Splicer’s placement optimiza-

tion makes communication costs smaller (see §V-C). Thus in

700

(a) Balance cost (b) Trade-off in costs (c) Small-scale networks (d) Large-scale networks (e) Small-scale costs (f) Large-scale costs

Fig. 9. Evaluation of smooth node placement.

TABLE II
THE INFLUENCE OF THE DIFFERENT CHOICES IN ROUTING FOR SPLICER.

Scale
Path Type Path Number Scheduling Algorithm

KSP Heuristic EDW EDS 1 3 5 7 FIFO LIFO SPF EDF

Small 65.20% 77.02% 85.29% 83.26% 32.31% 70.74% 86.13% 82.88% 53.81% 90.35% 76.18% 70.44%

Large 58.85% 76.19% 90.07% 88.31% 35.53% 65.45% 90.40% 87.72% 61.19% 93.23% 82.21% 78.26%

large-scale low-power scenarios, we recommend Splicer.

C. Evaluation of Smooth Node Placement

We evaluate the placement of smooth nodes as in Fig. 9.

Efficiency tradeoff. Fig. 9(a) and 9(b) show the influence

of weight value on the costs in the small-scale network. Fig.

9(a) shows that running the PCHs’ average balance cost varies

with the weight value of ω proposed in §IV-B. Overall, the

performance of our model is close to the optimal for almost

all values of ω. This indicates that our model successfully

simulates the relationship between the two communication costs

of the network. Fig. 9(b) further shows the tradeoff between

the two costs. The annotation for the nodes in the figure is the

corresponding weight ω and the number of smooth nodes (e.g.

4 smooth nodes for ω = 0.04). Management costs are incurred

between smooth nodes and clients, and synchronization costs

are only incurred between smooth nodes. PCNs have different

affordability for these two costs. For example, because of the

strong computational capability of the PCHs, PCNs can bear

a high cost of synchronization. Clients may be IoT nodes so

that PCNs can carry less management cost. Therefore, Splicer

can adjust both costs by increasing or decreasing the number

of smooth nodes in the voting smart contract suitably based on

the results. In addition, the influence curves of weight value

on costs in the large-scale network are similar to those in the

small-scale network. The difference is that large-scale networks

require more smooth nodes than small-scale networks. Fig. 9(c)

and 9(d) show the number of smooth nodes for different weight

values ω in small and large network scales. When management

cost is preferred, Splicer deploys more smooth nodes, reducing

the communication overhead and latency of the smooth nodes

managing the clients and vice-versa.

PCH placement effectiveness. Fig. 9(e) and 9(f) show the

average transaction delay and total traffic overhead with and

without PCHs (i.e., comparing distributed routing and source

routing decisions) to demonstrate the effectiveness of smooth

nodes. We depict the delay-overhead curves by iterating the

weight values in small and large-scale networks. If without

smooth nodes, the average delay and traffic overhead are fixed.

With similar total overhead, the average delay of Splicer is

significantly lower than without smooth nodes. Overall, Splicer

achieves 80.9% lower latency than schemes without PCHs (e.g.,

Spider). Appropriate placement of some PCHs can reduce the

total overhead of the network. Besides, Splicer can tolerate

more traffic overhead to reduce transaction latency further.

D. Routing Choices in Splicer

In addition, we study the influence of the different choices

in routing on the TSR, as shown in Table II.

Path type. We evaluate the performance by choosing

different types of routing paths for each source-destination

pair in two network scales. KSP means the k-shortest paths.

Heuristic method picks 5 feasible paths with the highest

channel funds. EDW represents the edge-disjoint widest paths.

EDS means the edge-disjoint shortest paths. The results show

that EDW outperforms other approaches in two network scales.

Due to the channel size following the heavy-tailed distribution,

the widest paths can better utilize the network’s capacity.

Path number. We evaluate the performance in the different

numbers of EDW paths. The TSR increases as the number of

paths increases, suggesting that more paths utilize the network’s

capacity better. It is noted that the TSR declines slightly as the

number of paths increases to 7, due to the high computational

complexity that causes the performance bottleneck. Therefore,

we choose 5 routing paths in Splicer.

Scheduling algorithm. We change the scheduling methods

for the waiting queue. There are four kinds of methods: first

in first out (FIFO); last in first out (LIFO); smallest payments

first (SPF); and earliest deadline first (EDF). The results show

that LIFO represents 10-40% higher than other methods since it

first processes the transactions far from the deadline. FIFO and

EDF process transactions closest to their deadlines, resulting

in poor transaction performance due to more failures. Though

SPF shows the second well performance, the large transactions

pile up and take up a lot of channel funds, leading to a lower

transaction success ratio.

VI. RELATED WORK

Payment channel hubs: TumbleBit [3] presents a cryp-

tographic protocol for the PCHs, which maintains multi-

channels to reduce the routing complexity and make the

transactions unlinkable (i.e., the hubs do not know the two

parties of transactions). But TumbleBit relies on scripting-based

functionality, and the communication complexity increases

linearly with the security parameter. A2L [4] proposes a novel

cryptographic primitive to improve TumbleBit, which provides

better backward compatibility and efficiency. Commit-chains

701

[12] process off-chain transactions in a pattern similar to PCHs:

a centralized operator maintains a service for multiple users. It

provides a tradeoff between channel establishment cost, user

churn, collateral management, and decentralization. Perun [11]

proposes a smart contract-based method to build virtual PCHs

to reduce communication complexity but at the cost of losing

unlinkability. However, they do not consider the placement of

the PCH. The PCH placement problem can significantly affect

the transaction latency and communication overhead of PCNs.

Layer-2 source routing: Flare [6] describes a hybrid routing

algorithm, which seeks to optimize the average time of finding

a payment route. Revive [8] proposes the first rebalancing

scheme for PCNs, which rebalances the channels where node

funds are unbalanced. But the routing algorithm proposed by

Revive relies on a trusted third party, which is vulnerable

to the single point of attack. Sprites [7] tries to reduce the

worst-case “collateral cost” of an off-chain linked transaction.

Spider [9] presents a multi-path routing scheme based on

“packetization”, which can achieve high-throughput routing in

the PCNs. However, the sender computes the routing path to the

recipient. In a large-scale PCN, the performance requirements

of the sender can be quite demanding. In addition, there are

other new layer-2 scaling solutions, such as Rollups [31]

proposed on Ethereum, that increase throughput by batching

transactions at the expense of high latency. However, it is

outside the scope of our discussion on PCN architecture.

VII. CONCLUSION

We propose a distributed routing mechanism with high

scalability based on multiple PCHs, to seek a new tradeoff

between decentralization and scalability for PCNs. PCHs

route transaction flows in PCNs in an optimal deadlock-free

manner. We formulate the PCH placement problem for network

scalability and propose two solutions in small and large-scale

networks. To improve performance scalability, we design the

rate-based routing and congestion control protocol on PCHs.

Extensive experimental results show that Splicer outperforms

the state-of-the-arts.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D

Program of China (No. 2020YFB1005500); the National

Natural Science Foundation of China (No. 61972310, 61972017,

62072487, 61941114); the Beijing Natural Science Founda-

tion (No. M21036); the Populus Euphratica Found, China

(No. CCFHuaweiBC2021008); the Innovation Fund of Xidian

University, China (No. YJSJ23005).

REFERENCES

[1] The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments.
[Online]. Available: https://lightning.network/lightning-network-paper.pdf

[2] Raiden network. [Online]. Available: https://raiden.network
[3] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,

“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub.”
in NDSS, 2017.

[4] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2L: Anonymous Atomic
Locks for Scalability in Payment Channel Hubs,” in 2021 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 1834–1851.

[5] EOSIO Blockchain. [Online]. Available: https://eos.io/
[6] M. S. A. O. Pavel Prihodko, Slava Zhigulin and O. Osuntokun, “Flare:

An approach to routing in lightning network,” 2016.
[7] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites

and state channels: Payment networks that go faster than lightning.” in
Financial Cryptography, vol. 11598, 2019, pp. 508–526.

[8] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17, 2017, p. 439–453.

[9] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal,
G. Fanti, and M. Alizadeh, “High throughput cryptocurrency routing in
payment channel networks,” in NSDI, 2020.

[10] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: efficient dynamic routing
for offchain networks.” in CoNEXT. ACM, 2019, pp. 370–381.

[11] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 106–123.

[12] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and A. Gervais,
“Commit-chains: Secure, scalable off-chain payments,” Cryptology ePrint
Archive, Report 2018/642, 2018.

[13] Lightning Network Daemon. [Online]. Available: https://github.com/
lightningnetwork/lnd

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems.” in EUROCRYPT,
vol. 1592, 1999, pp. 295–310.

[15] P. Li, T. Miyazaki, and W. Zhou, “Secure balance planning of off-
blockchain payment channel networks.” in INFOCOM. IEEE, 2020, pp.
1728–1737.

[16] Z.-L. Ge, Y. Zhang, Y. Long, and D. Gu, “Shaduf: Non-cycle payment
channel rebalancing,” in NDSS, 2022.

[17] L. E. Celis, L. Huang, and N. K. Vishnoi, “Multiwinner voting with
fairness constraints.” in IJCAI, 2018, pp. 144–151.

[18] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas, “SDN Controller
Placement at the Edge: Optimizing Delay and Overheads.” in INFOCOM.
IEEE, 2018, pp. 684–692.

[19] V. P. Il’ev, “An approximation guarantee of the greedy descent algorithm
for minimizing a supermodular set function.” Discret. Appl. Math., vol.
114, no. 1-3, pp. 131–146, 2001.

[20] M. Feldman, J. Naor, and R. Schwartz, “Nonmonotone submodular
maximization via a structural continuous greedy algorithm - (extended
abstract).” in ICALP (1), vol. 6755, 2011, pp. 342–353.

[21] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, “A tight linear
time (1/2)-approximation for unconstrained submodular maximization.”
SIAM J. Comput., vol. 44, no. 5, pp. 1384–1402, 2015.

[22] F. P. Kelly and T. Voice, “Stability of end-to-end algorithms for joint
routing and rate control.” Computer Communication Review, vol. 35,
no. 2, pp. 5–12, 2005.

[23] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing
and rate control,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 2, pp. 5–12, 2005.

[24] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[25] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant.” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[26] A. Hadian, S. Nobari, B. Minaei-Bidgoli, and Q. Qu, “ROLL: Fast
In-Memory Generation of Gigantic Scale-free Networks.” in SIGMOD
Conference, 2016, pp. 1829–1842.

[27] S. Tikhomirov, P. Moreno-Sanchez, and M. Maffei, “A quantitative
analysis of security, anonymity and scalability for the lightning network.”
in EuroS&P Workshops, 2020, pp. 387–396.

[28] Credit Card Fraud Detection. [Online]. Available: https://www.kaggle.
com/mlg-ulb/creditcardfraud

[29] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhis-
pers: Enforcing security and privacy in decentralized credit networks.”
in NDSS, 2017.

[30] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions.” in NDSS, 2018.

[31] Optimistic Rollups. [Online]. Available: https://docs.ethhub.io/
ethereum-roadmap/layer-2-scaling/optimistic rollups/

702

