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Abstract—Privacy issues in continuous Location-Based Ser-
vices (LBSs) have gained attractive attentions in literature over
recent years. In this paper, we illustrate the limitations of
existing work and define an entropy-based privacy metric to
quantify the privacy degree based on a set of vital observations.
To tackle the privacy issues, we propose an efficient privacy-
preserving scheme, DUMMY-T, which aims to protect LBSs
user’s privacy against adversaries with background information.
By our Dummy Locations Generating (DLG) algorithm, we first
generate a set of realistic dummy locations for each snapshot
with considering the minimum cloaking region and background
information. Further, our proposed Dummy Paths Constructing
(DPC) algorithm guarantees the location reachability by taking
the maximum distance of the moving mobile users into consider-
ation. Security analysis and empirical evaluation results further
verify the effectiveness and efficiency of our DUMMY-T.

I. INTRODUCTION

Location-Based Services (LBSs) have become increasingly

popular over recent years. Users with mobile devices such as

smartphones or tablets can download location-based applica-

tions from Apple Store or Google Play Store, and install them

locally to learn the environments and enjoy the convenience

provided by the LBS servers. Generally, there are two types

of LBSs, namely, snapshot and continuous LBSs (cLBSs for

short). For example, mobile users can look for the hotels or

banks nearby (snapshot LBSs), and go there under navigation

of the GPS-based applications (cLBSs).

However, mobile users always need to continuously submit

their location-related queries to the untrusted LBS server, who

can obtain all the information about users such as where they

are at which time, and what they are doing, etc., and who may

also track users in various ways or release their personal data

to third parties. These privacy threats become more seriously in

the continuous scenario. Thus, we need to pay more attention

to user’s privacy in cLBSs.

To address such privacy issues, many approaches [1], [2],

[3], [4], [5], [6], [7], [8], [9] have been proposed from the

research community over recent years. They can be roughly

categorized into two main types in terms of system architec-

ture, including 1) trusted anonymizer-based approaches [4],

[5], [?] and 2) client-based approaches [1], [3], [2], [10].

Technically, besides some techniques such as Mix-zone [11],

vehicular mix-zone [7], [8], [9] and path confusion [6], spatial

cloaking [3], [4] and dummy routes [1], [2] are two popular

techniques to provide location privacy protection for mobile

users in LBSs. They can be achieved through group-based P2P

[3], distortion-based [5], prediction-based [4] and randomly

dummy choosing-based [2] approaches. However, we believe

that most of existing approaches fail in one or more of

the following arguments, 1) deeply relying on the trusted

anonymizer which may lead to serious privacy concern such

as single point of failure; 2) hardly balancing the tradeoff

between system performance and the size of cloaking regions,

for instance, bigger cloaking regions bring higher privacy level

but more system overhead and vice versa; 3) failing to make

a full consideration on the background information [12], [13]

in adversaries’ hands.

In this paper, we consider the aforementioned arguments and

propose a Location Privacy Metric for cLBSs scenario to mea-

sure the privacy level. Further, with combining spatial cloaking

and dummy-based techniques, we design an efficient privacy-

preserving location protecting scheme for cLBSs users against

adversaries with background information, called DUMMY-T.

The contributions of this paper are as follows.

• We make a set of observations based on two existing ap-

proaches, which may lead to serious privacy attacks performed

by adversaries with background information.

• We define an entropy-based Location Privacy Metric,

which measures the privacy level of k-anonymity-based solu-

tions considering the privacy concerns from our observations.

• We propose a privacy-preserving scheme, termed

DUMMY-T, which provide k-anonymity for cLBSs users. By

DLG algorithms, we first generate a set of realistic dummy

locations for each snapshot that guarantees the minimum

cloaking region and resists from attacks performed by ad-

versaries with background information. Further, with DPC

algorithm, we connect the dummy locations together into the

dummy paths with considering the location reachability.

• Analytical and simulation results show that our scheme

can achieve our objectives effectively and efficiently.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III gives the preliminaries.

Following in Section IV, we describe the details of our
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proposed system. Then, the security analysis is provided in

Section V. Finally, we evaluate the performance and draw the

conclusion in Section VI and VII, respectively.

II. RELATED WORK

A. Metrics for Location Privacy

k-anonymity [14] is a well used metric to measure user’s

location privacy in LBSs, based on which linking two

pseudonyms of a particular user and distinguishing the paths

along which a user may travel has been investigated in [15]

and [6], respectively. Later, as an extension of k-anonymity,

entropy-based metrics [15], [6], [13], [16] and distortion-

based metrics [17] have been widely adopted. To quantify

the location privacy, we should find out how accurately an

adversary might infer about the location information. A well-

known metric for privacy is k-anonymity [2], [4], which aims

to improve the uncertainty of location privacy by hiding the

real location into other k−1 with dummies [2] or history data

[4]. However, they failed to consider background information

such as query probability or road density. Thus, we need

to design a new metric for user’s location privacy with full

consideration of background information.

B. Protecting Location Privacy

A significant amount of researches has been proposed on

protecting location privacy for mobile users in LBSs, including

spatial cloaking, dummy routes, mix-zone and path confusion

etc., which are achieved through either trusted anonymizer [4],

[5] or mobile client [1], [3], [2]. With the trusted anonymizer,

mobile users in [5] report their locations to the anonymizer,

which takes users’ movement directions and velocities to

construct minimized cloaked spatial regions to achieve k-

anonymity. However, the single point of failure happens once

the anonymizer is compromised. Xu et al. [4] explored each in-

dividual’s historical footprints to achieve k-anonymity, instead

of real time locations. Unfortunately, user’s privacy degree is

still related to the employed anonymizer. Later, Mix-zone [7],

[8] is proposed to achieve the desired anonymity degree by

periodically changing the pseudonym. However, the employed

mix-router acts as another kind of trusted anonymizer, and may

pose user’s privacy in danger. Without the trusted anonymizer,

Kido et al. [1] proposed to use dummy routes to achieve

anonymity. However, they only focused on reducing system

overhead but ignored the background information, and thus,

the desired anonymity degree cannot be guaranteed. Similarly,

You et al. tried to generate a set of realistic dummies in terms

of three metrics, however, the background information was

also ignored. For the technique details of these approaches,

we refer the readers to a recent survey [18].

III. PRELIMINARIES

A. Basic Concepts

Background Information: In our work, this kind of in-

formation is limited to users’ query probability information in

the local map. Specifically, we divide a local map into a set of

cells (e.g., n×n cells), a user’s query probability is represented

as the probability that the user submits location-based queries

on a particular cell.

Minimum Cloaking Region (MCR): Suppose we decom-

pose all the locations within a cLBSs (termed as route) into

several snapshots (i.e., n). With spatial cloking technique, the

user in each snapshot should construct a cloaking region,

which covers other k − 1 users to confuse the LBS server.

This term thus aims to limit the minimum size of the cloaking

region in all the snapshots due to the privacy concern.

Location Reachability (LR): For any current location lti
in either real route or dummy paths, the next location lti+1

should be reachable based on the user’s velocity.

B. Motivation

Our work is motivated by a set of observations on two

existing location privacy protecting schemes, which can be

found in Fig. 1(a) and 1(b), respectively. We first review a his-

torical footprints-based solution [4] shown in Fig. 1(a), which

uses the historical footprints to predict the user’s movement

and protect the location privacy in cLBSs. In this figure, U1

represents the expected route, which can be further divided

into several snapshots (i.e., 5 snapshots in the whole route)

with different timestamps. T1 and T2 are two historical routes.

In each snapshot, Ci is the cloaking region which covers the

user’s current location and other two locations of the historical

routes for anonymous purpose. Based on these knowledge,

we illustrate our observations. Observation I: This scheme

is deeply relied on a fully trusted location anonymizer, which

may cause serious problems such as single point of failure

from either system performance or user’s privacy points of

view. Observation II: Due to the system overhead issue,

the authors try to minimize the size of the cloaking region

as much as possible. However, user’s location privacy may

be revealed by a too small cloaking region (i.e., C4, which

means that these three locations may be targeted into a very

small area such as a bar at a downtown area). Further, with

more historical routes collected, there may be more number

of cloaking regions like C4, the user’s location privacy is thus

revealed. Observation III: It is hard to balance the system

performance with privacy level, since less historical routes

may lead to bigger cloaking regions, while more historical

routes may cause the privacy problem mentioned in Obser-

vation II. Similar to Fig. 1(a), we review another dummy-

based solution [2] shown in Fig. 1(b), which avoids the heavy

storage overhead and the single point of failure problem caused

by the central server. To achieve k-anonymity in cLBSs, the

real user construct another k-1 dummies by connecting a set

of dummy locations. However, due to the ignorance on the

background information, the desired privacy level may not

be achieved effectively. Observation IV: Since the chosen

dummy locations in the snapshots may fall at some unlikely

locations such as lakes, swamps, and rugged mountains, the

two dummies T1 and T2 may be easily filtered out by the

adversaries with the background information. Observation V:

This scheme prefers more intersections between routes from

the system performance point of view. However, we argue that,
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Fig. 1. Our motivations on the limitations of existing approaches

more intersections may cause the privacy problem mentioned

in Observation II. As a result, the user’s moving trend may

be disclosed.

This work is motivated by all these five observations on the

two kinds of location privacy-preserving solutions.

C. Our Basic Idea

To tackle the aforementioned problems, the main purpose

of our scheme is to design an efficient scheme, which fully

considers the background information in the whole process

and achieves several privacy properties in terms of minimum

cloaking region guarantee and reachability within each dummy

path. We illustrate our idea by a simple example shown in

Fig. 2. Specifically, a particular user Alice tries to protect her

privacy under 3-anonymity, the whole process can be divided

into 5 snapshots based on the increasing timestamps t1, t2, t3,

t4 and t5. The corresponding cloaking region in each snapshot

is denoted as C1, C2, C3, C4 and C5. The route in blue is the

user’s real route, and the routes in gray and yellow represent

our carefully generated dummy paths. For each snapshot, DLG

algorithm generates a set of dummy locations which cannot

be distinguished from others easily, while guaranteeing that

all the selected dummy locations within each snapshot should

not fall into a too small region (i.e., a bar area). Further, DPC

algorithm connects the corresponding dummy locations into

several dummy paths with considering the reachability, which

guarantees that the next location can be reached from current

location in each path according to user’s velocity.

IV. OUR PROPOSED DUMMY-T

In this section, we first present the system architecture of

our proposed DUMMY-T, then we define our location privacy
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Fig. 2. Our basic idea

metric, show the dummy location generating algorithm and

dummy paths constructing algorithm, respectively.

A. System Architecture

Our proposed scheme, termed DUMMY-T, uses a distributed

architecture. Mobile users in our scheme work independently

and connect to the LBS server through cellular networks, such

as 3G/4G. When a particular user Alice needs LBSs, she runs

our scheme locally to generate several dummy paths around

the real route, then submits them together to the LBS server

to obtain service data. Generally, we separate our scheme into

two main algorithms, Dummy Locations Generating (DLG)

algorithm and Dummy Paths Constructing algorithm (DPC).

B. Location Privacy Metric

Basically, our Location Privacy Metric (LPM) is defined

based on the location entropy, which can be seen as the

uncertainty in determining the current location of an individual

[19] from all the candidates. It can be computed as

H = −

k
∑

j=1

pj · log2 pj , (1)

where pj means the probability assigned on each possible

location and the sum of all probabilities pj is 1.

To further adopt it into the cLBSs scenarios, we recall the

example shown in Fig. 2 and extend it by the following steps.

(i) We compute the entropy for each snapshot by

HCi
= −

k
∑

j=1

pij · log2 p
i
j , (2)

where pij represents the normalized query probability

of the anonymous set (i.e., plr , pd1
and pd′

1
in the

first snapshot in our example). This term describes the

uncertainty to distinguish the user’s real location from

all the possible locations in a single snapshot.

(ii) We know that the maximum entropy is achieved when

all the k possible locations have the same probability 1

k
,

where the maximum entropy will be Hmax
Ci

= log2 k.

Ideally, we aim to achieve the maximum entropy in each

snapshot, therefore, we compute the average entropy as

HC =

∑n

i=1
HCi

n
, (3)



where n is the total number of snapshots.

(iii) Finally, we obtain the variance of the average entropy

in all the snapshots by

σ2 = E[(HC −HC)
2]

=

∑n

i=1
(HC −HC)

2

n
. (4)

Obviously, due to the differences of uncertainty between

different snapshots, the lower the σ2 is, the higher privacy

level will be.

C. Dummy Locations Generating Algorithm

Let’s recall the example in Fig. 2, the user’s route can

be determined easily (i.e., the shortest route provided by

submitting the destination to GPS device), which is shown

in blue. We now use a simple example shown in Fig. 3 to

show how DLG algorithm works under a particular snapshot

(C1 at the timestamp t1). Suppose the user-defined Minimum

Cloaking Region (MCR) is denoted as Amin, we then compute

the corresponding minimum radius as

rmin =

√

Amin

π
. (5)

For a particular snapshot Ci, based on the real user’s location

lir, we define a virtual circle with a randomly chosen center Oi

and of radius Ri, which can be found in Fig. 3(a) and satisfies

Ri = |Oi l
i
r|

= rmin · δi, (6)

where δi is a user defined parameter and satisfies |δi−1| = εi.

Note that, εi is a small positive number such as 0.05 or 0.1.

Next, we partition this virtual circle into k parts with equal

angle θ = 2π
k

(equal angle is defined here to guarantee that

any two routes in a particular snapshot cannot be too close to

each other), and find out the corresponding points li
2
, li

3
, · · · , lik

with the clockwise direction, respectively. Further, in Fig.

3(b), we blur the obtained points li
2
, li

3
, · · · , lij , · · · l

i
k into

their final positions di
2
, di

3
, · · · , dij , · · · , d

i
k with considering

the background information. Specifically, for each obtained

point (i.e., lij), we first define an offset D (i.e., 0.1 or 0.2

mile), search and find out the proper cells, which have similar

query probability with the real user’s, within the circular region

with the center point lij and of radius D. Then, we can obtain

a set of candidates (i.e., the cells in gray within the red dashed

circle in our example, denoted as Li
j), which can guarantee the

privacy level in terms of LPM (shown in Eq. 4). To improve

the system performance, we can either limit the size of the

candidate set or reduce the offset D.

D. Dummy Paths Constructing Algorithm

With the candidate sets of all the snapshots in hand, we

consider the Location Reachability (LR) property and design

DPC algorithm to find out the optimal dummy paths to achieve

the k-anonymity.

Generally, the first snapshot can be determined easily

through DLG algorithm and other snapshots are determined by
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Fig. 3. Dummy locations generating algorithm

DPC algorithm as in Algorithm 1. To consider LR property, we

define a parameter Dismax
ti

, which aims to give a limitation on

the maximum distance that a user can move from the current

location (in current snapshot) to the next. It can be computed

as

Dismax
ti

= vti × (ti − ti−1), (7)

where vti indicates the user’s corresponding velocity at a

particular snapshot when the timestamp is ti. We also define

the dummy path Dj to achieve k-anonymity. DPC algorithm

is to fill up Dj with carefully selected dummy locations. For

each obtained candidate set Li
j from DLG algorithm, we filter

out some unreachable locations in terms of Dismax
ti

, then

randomly choose one location from the remaining set and add

it into the final dummy path Dj . Through this way, we can

obtain k − 1 sets of dummy paths D2, · · · ,Dk, respectively.

Algorithm 1: Dummy Paths Constructing Algorithm

Input : the candidate sets Li
j , n, k, ti, user’s velocity vti

Output: k − 1 dummy paths D2, · · · ,Dk

1 initiates Dj = ∅;
2 for (i = 2; i < n; i++) do
3 computes Dismax

ti
= vti × (ti − ti−1);

4 for (j = 2; i < k; j ++) do

5 adds di−1

j into dummy path Dj ;

6 for (∀ lm ∈ Li
j) do

7 computes dm = dis(di−1

j , lm);
8 if (dm > Dismax

ti
) then

9 removes lm from Li
j ;

10 end
11 end

12 randomly chooses a location from Li
j and adds it into

dummy path Dj ;
13 end
14 end
15 outputs D2, · · · ,Dk .

V. SECURITY ANALYSIS

We consider two types of adversaries in our work, passive

adversary and active adversary. Attacks from passive adver-

sary are always based on eavesdropping messages from the

communication channels, then modify, replay or inject these

messages. Actually, these kinds of attacks can be avoided



easily by employing some cryptography tools such as Public

Key Infrastructure (PKI). We thus focus on avoiding attacks

from the active adversary, who can compromise LBS servers

and obtain all the information of mobile clients, such as

colluding attacks and inference attacks, which may cause

serious privacy problems.

A. Resistance to Colluding Attacks

Adversaries may collude with some users to learn extra

information than allowed.

Theorem 1. Our scheme is colluding attack resistant.

Proof: Colluding attack always happen between a set of

users. However in our scheme, since there is no interaction

with any other users, colluding with users has no effect on

other users, thus, our scheme is colluding attack resistant.

The best case to this kind of adversaries is that he can

get all the information by compromising LBS server, then he

becomes an active adversary to perform inference attack.

B. Resistance to Inference Attack

Since we consider the untrusted LBS server as the active

adversary to perform inference attack, he can obtain knowl-

edge by monitoring all the users in the system, including their

interests, current query as well as the query history, etc. His

aim then is to target an observed route to the real user.

Theorem 2. Our scheme is inference attack resistant.

Proof: To perform the inference attack, the active ad-

versary may use any possible ways, such as 1) analyzing the

minimum cloaking region (see in our Observation II, V in Sec

III-B) or 2) filtering locations with background information

(see in Observation IV) in each snapshot. However, for each

snapshot in our scheme, due to the minimum cloaking region

Amin is considered at the beginning of our DLG algorithm,

the size of each constructed cloaking region is guaranteed

to be similar to Amin. As a result, the adversaries cannot

increase the success ratio on determining the dummy locations

or dummy paths by analyzing each cloaking region. On the

other hand, we use a location blurring phase in our DLG

algorithm to fully consider the background information. By

blurring each dummy location lij into the final position dij ,

which has similar query probability with the real user’s, the

adversaries can hardly distinguish user’s real location from

other k − 1 dummies, even with the background information.

Therefore, k-anonymity can be further guaranteed.

VI. PERFORMANCE EVALUATIONS

A. Simulation Setup

To obtain the route data, we first analyze the Borlange

Data Set, which was collected over two years as part of an

experiment on traffic congestion that took place in Borlange

(see [20] for more details), and randomly choose 5000 routes

from the central part (about 8km × 8km) of this map. We

then divide this area into a grid with 160 × 160 cells and
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compute the background information based on the frequency

information appeared in each cell.

There are several parameters used in our evaluation. k

is related to k-anonymity, and is commonly set from 3 to

20. We compare our proposed DUMMY-T with four other

schemes. The Random scheme represents the dummy selection

algorithm in [1], which randomly chooses dummies. The

Optimal scheme shows the optimal results of k-anonymity

in theory. The Rotation scheme indicates the rotation-based

dummy selection algorithm mentioned in [2]. The Footprint

scheme [4] is a prediction-based scheme which achieves k-

anonymity for mobile users based on the historical route data.

B. Evaluation Results

1) k vs. execution time: We first show the relationship

between execution time and k when using different schemes.

In Fig. 4, the Random scheme [1] performs better than other

schemes since it does not focus on improving the user privacy.

For the other results in this figure, our DUMMY-T provides

competitive performance compared to the Rotation scheme [2]

and the Footprint scheme [4]. Note that, in this experiment,

the offset D is set to 300 meters, which brings more searching

overhead when determining the final position of each chosen

dummy location in Fig. 3(b). That is to say, the execution time

can be further reduced once we decrease the offset D.

2) k vs. user privacy: Then we evaluate the effect of

varying k on the exposing probability of the user’s real route,

which can be computed as

PRreal =

∑n

i=1
pireal

n
, (8)

where pireal represents the query probability of the cell that

real user located in each snapshot. From Fig. 5(a), we can

see our DUMMY-T is very close to the optimal value in each

tested k and outperforms other existing schemes. Obviously,

the performance of Random scheme is the worst due to

the ignorance on the background information. Comparing the

Rotation [2] scheme with Footprint [4] scheme, the latter one

is better, the reason is that Footprint collects user’s historical

data to achieve anonymity and locations on each historical

routes are solid, which guarantees the anonymity degree in

some sense. Although route rotation phase is employed in their

scheme to guarantee the similarity of newly generated dummy

routes, the background information is still ignored. Therefore,

the exposing probability of the real route increases. We also
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Fig. 5. k vs. user privacy
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show the average entropy of each route in terms of Eq. 3. Same

as the exposing probability, Fig. 5(b) shows the performance of

different schemes and DUMMY-T still outperforms Random,

Rotation and Footprint.

3) k vs. σ2: Next, we use Eq. 4 to evaluate the performance

of the variance of the average entropy, which is closely related

to the user’s privacy. The optimal result is that the entropy of

each snapshot is log
2
k, and σ2 = 0. As a result, the adversary

can only distinguish the user’s real route randomly. As shown

in Fig. 6(a), we can clear see the better performance provided

by our DUMMY-T.

4) k vs. α2: Finally, we evaluate the impact of different k

on the variance to user defined Amin, it can be computed as

α2 =

∑n

i=1
(ACi

−Amin)
2

n
, (9)

where ACi
denotes the size of the ith snapshot Ci. Generally,

higher α2 means the size of the cloaking region in some

snapshots may be too big than user defined Amin, and

some of them may be too small. Therefore, they may cause

serious privacy problems as illustrated in our Observation

II in Sec. III-B. Fig. 6(b) shows the evaluation results of

different schemes. Specifically, our DUMMY-T works well,

and Footprint is better than other schemes due to the utilization

on the historical data, which guarantees that the cloaking

region cannot be too big.

VII. CONCLUSIONS

In this paper, we presented a novel privacy-preserving

scheme to protect user privacy for mobile users in cLBSs.

With several observations, we pointed out the serious privacy

problems in existing solutions. Based on our newly defined

location privacy metric, we proposed an efficient privacy-

preserving scheme, DUMMY-T. With considering the mini-

mum cloaking region and background information may be

disclosed, DUMMY-T first generates a set of realistic dummy

locations in each snapshot, and then, connected them into

dummy paths by taking the location reachability property into

consideration.
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