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Abstract—The location information for tasks may expose
sensitive information, which impedes the practical use of
mobile crowdsensing in the industrial Internet. In this arti-
cle, to our knowledge, we are the first to discuss the pri-
vacy protection of task locations and propose a codebook-
based task allocation mechanism to protect it. Consider-
ing the cost of system utility caused by privacy protection
technology, the tradeoff between local privacy and system
utility is formalized a multiobjective optimization problem.
The optimal solution is theoretically derived, and the op-
timal task allocation scheme is obtained. In addition, the
selected allocation codebook (SAC) method is introduced
to solve the problem of high computational resource con-
sumption in the task allocation process and protect the task
location privacy to some extent. The experimental results
show that the SAC method sacrifices system utility but im-
proves the privacy protection for task locations by 60% on
average.

Index Terms—Information theory, location privacy pro-
tection, mobile crowdsensing (MCS), privacy exposure
measure, task allocation.
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I. INTRODUCTION

W ITH the rapid development of Internet technology, mo-
bile devices are becoming increasingly popular and

equipped with powerful embedded sensors (e.g., compasses,
global positioning systems, thermometers, microphones, and
cameras) [1]. These mobile devices with wireless sensing abil-
ities can be used to monitor a wide variety of human activities
and environments, thus creating a new Internet of Things (IoT)
sensing paradigm called mobile crowdsensing (MCS). Due to
their low cost and comprehensive coverage, MCS systems have
become common data collection tools for various industrial IoT
applications and services. In terms of data collection, MCS relies
on the contributions of mobile devices from a large number
of participants or groups of people. Compared with traditional
sensor networks, MCS networks utilize existing sensing and
mobile communication infrastructures to provide unprecedented
coverage of time and space. Due to the powerful perception
and communication abilities of MCS systems, such systems
have been widely developed and used in various applications,
including traffic management [2], road surface condition mon-
itoring [3], [4], daily lifestyle monitoring in the elderly popu-
lation [5], and air pollution detection [6]. The typical system
architecture of MCSs includes three parts: service platforms, re-
questers, and data providers (i.e., workers) [7]–[9]. The process
of MCS is shown in Fig. 1, which involves the basic functions
of data perception, data acquisition, and information service
provision in a distributed and independent service mode.

Privacy protection has always been a popular issue in MCS
systems, and has been widely studied by researchers. In a general
MCS system, tasks are location-related, and the sensing task
location information should be reported to the platform to facil-
itate the matching of tasks and workers according to location in
task allocation. However, reporting location information during
the task allocation process can lead to serious privacy issues,
especially if there are dishonest service platforms and mali-
cious attackers in the system. If participants upload the correct
data unaware, attackers can take advantage of it. Attackers can
pose as workers, or they can act as more powerful attackers
directly in the task allocation platform and then lead to privacy
data leakage. Therefore, location privacy protection in MCS
systems is important. The existing works mainly focused on
privacy protection for workers and proposed privacy protection
schemes from different perspectives to prevent security threats
in MCS systems. However, they may neglect to take another
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Fig. 1. MCS system.

critical factor, task location privacy, into consideration. There
has been little work related to protecting the privacy of sensing
task locations. With the exposure of task location information,
dishonest servers, and malicious attackers can learn requesters’
habits and obtain sensitive information. Therefore, it is necessary
to provide privacy protection for sensing service requesters and
combat potential security threats.

Existing works have proposed many methods to protect pri-
vacy, and the most intuitive way to measure the effectiveness
of these methods is the degree of privacy protection. Therefore,
how to measure the degree of privacy protection or exposure
is a significant problem that must be considered. In informa-
tion theory, mutual information can be regarded as the amount
of information contained in a random variable about another
random variable, which can be used to calculate the degree
of privacy exposure. Additionally, effectively allocating tasks
while protecting task location privacy has always been a chal-
lenge. In general, the realization of privacy protection in MCS
systems usually comes at the cost of system utility. However,
privacy protection and system utility are challenging to balance,
and simple privacy protection mechanisms are challenging to
implement.

Our work focuses on and discusses the challenges of MCS
noted above. In this article, service requesters maintain privacy
by obscuring information reported to a third-party platform.
However, a typical cybersecurity approach alone is insufficient,
as the normal assignment operations of the platform may allow
an adversary to infer critical aspects of a sensing task. For
example, an attacker could legitimately manipulate multiple
smartphones and use the task allocation results from the platform
to infer the characteristics of tasks and requesters. Moreover, the
accuracy of the communication data transmitted among users
and platforms affects the protection of user privacy and the utility
of system allocation. Thus, there is a potential tradeoff between
protecting task location privacy and maximizing the utility of
the MCS system.

A. Our Contributions

Considering all of the above problems, this article proposes
a scheme to protect the privacy of requesters’ task locations
and designs a general MCS system that meets the relevant
requirements for sensing task allocation while protecting loca-
tion privacy. To our knowledge, we are the first to discuss the
task location protection problem in MCS systems. The main
contributions of this article are as follows.

1) We construct two sets of discrete values, namely, a set of
the information obtained by an attacker and a set of the
actual task possible location information. By using these

two sets, we successfully apply the concept of mutual
information in information theory to an MCS system,
measure the degree of privacy exposure of the system,
and achieve privacy quantification.

2) We solve the sensing task allocation problem in the MCS
system while protecting task location privacy. In the pro-
cess of task allocation, an obfuscation mechanism is used
to protect the privacy of task locations and avoid privacy
exposure to some extent.

3) We model the MCS system discussed above as a sensing
task allocation problem under privacy protection con-
straints. This problem is, in essence, a multiobjective
optimization problem. The optimal solution of the op-
timization problem is derived theoretically, which is used
to calculate the optimal sensing task allocation result in
further.

4) The selected allocation codebook (SAC) method is pro-
posed to solve the problem of high computational re-
source consumption during the selection of optimal task
allocation results. Notably, the allocation result is chosen
from within a small range. The SAC method can aid in
task privacy protection to some extent and achieves a
tradeoff between location privacy protection and utility
in the studied MCS system.

B. Related Works

There are few studies on the protection of the privacy of
task locations, so this section focuses on the privacy protection
of participants in the MCS system. Many existing works have
focused on protecting the location privacy of participants in MCS
systems (e.g., [10]–[18]). For instance, Wang et al. [10] used the
k-anonymity method to reduce the risk of location privacy leak-
age. To protect the locations of users, Wang et al.[11] proposed
a task assignment framework for location privacy protection
with a geographic ambiguity processing function. In [12], a
task allocation framework for personalized privacy protection
in MCS systems was proposed, and the protection scheme was
implemented according to the personal privacy levels of workers.
Zhang et al. [13], using homomorphic Pailler encryption tech-
nology, designed two privacy protection schemes according to
whether a user is stable. Wang et al. [14] designed a differential
privacy protection framework to mitigate the loss of informa-
tion quality caused by location confusion. Zhang et al. [15]
proposed a novel differentially private geocoding mechanism
to preserve workers’ location privacy, and then workers can use
obfuscated geocode to describe their locations. Xiong et al. [16]
combined machine learning with game theory and proposed
an artificial intelligence-enabled three-party game framework
for guaranteed data privacy in the mobile edge crowdsensing
of the IoT. Xiong et al. [17] proposed a personalized privacy
protection framework based on game theory and data encryption
to tackle the issue of low-quality crowdsensing services in
MCSs. Zou et al. [18] proposed an effective blockchain-based
location-privacy-preserving crowdsensing model. These works
all contribute to protecting privacy; however, all of them ig-
nore the protection of task location privacy. Tasks’ location
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Fig. 2. System model.

information has the risk of exposing the privacy of the requesters,
which deserves our attention.

There have also been some works on the measurement of
privacy exposure. However, many works use the gap between
the obtained data and the actual data to measure the degree
of privacy protection and pay little attention to the amount of
information in the dataset. Andres et al. [19] introduced the
concepts of location-based privacy and geo-indistinguishability,
which encompass the intuitive concept of protecting a user’s
location within a certain radius. Other privacy quantification
methods, such as the average error and conditional entropy
methods, have also been introduced [20]. Zhang et al. [21]
considered the tracking level in individual user location privacy
protection, used the concept of mutual information to quantify
the tracking level of location privacy leakage and studied the
privacy-utility tradeoff. In the process of dynamic spectrum
allocation, the privacy of primary users was protected in [22].
Notably, mutual information and the average distance error were
used to quantify the degree of privacy leakage for primary user
locations. These works proposed various privacy measurement
methods and are applied to help quantify the effectiveness of
privacy protection methods. Therefore, mutual information can
also be applied to the MCS system to measure the effectiveness
of the protection method of task location privacy.

II. SYSTEM MODEL

This section first discusses the execution process of the tradi-
tional MCS system and then builds the system model to protect
the privacy of the task location, as shown in Fig. 2. The model
consists of three main parts, which are defined and set up in
detail in this section. It should be noted that the green parts of
the figure are associated with privacy protection.

A. Traditional MCS System

As shown in Fig. 2, the general execution process of an
MCS system without privacy protection (i.e., blue parts of the
system) is as follows. First, the workers who are recruited to
perform sensing tasks and the requesters who publish sensing
tasks to obtain sensing services send requested tasks and location
information to the platform, as noted in step 1. The platform
acts as a third party in a cloud server to allocate sensing tasks
to workers, as shown in step 3. The chosen workers perform
the allocated tasks and send the collected sensing data to the

platform. Then, the platform feeds the data to the corresponding
requesters in step 4. The complete execution process of the
traditional MCS system without considering privacy protection
can be found in Fig. 1. In the MCS system, fairness is a key
indicator used to evaluate the results of task allocation, that is,
whether all tasks have been completed and whether the number
of workers completing each task is approximately equal.

B. Private Requesters

The set of requesters in an MCS system is denoted as R =
{r1, r2, . . . , r|R|}. Each requester has one task that needs to
be completed. Similar to [23] and [24], this article considers
homogeneous tasks, that is, they belong to the same class, differ
little in execution, and consume the same amount of perceptual
and computational resources. For example, in an environmental
noise sensing system, a worker with a mobile device can simply
open specific software to detect it, and they consume roughly
the same amount of computing resources. Similarly, workers
are assumed to be homogenous, and there is no difference in
their ability to perform tasks; moreover, they can perform any
task. For any task, there is no limitation on the number of workers
performing it. It is assumed that the quality of the sensing service
is positively related to the number of workers performing the
corresponding sensing task. However, if too many workers are
involved in completing a task, the impact on fairness will be
negative. We define the quality of the collected sensing data
as nrj (rj ∈ R), which is related to the number of workers
performing the task rj . When calculating the quality of a task
allocation result, both the quality of task completion and the
fairness of tasks are taken into consideration.

The set of tasks published by these requesters is T =
{t1, t2, . . . , t|R|}, and the corresponding position set is expressed
asLt = {lt1 , lt2 , . . . , lt|R|}. Because a platform may not be trust-
worthy, requesters do not want to send real task location infor-
mation to the platform. To protect the above private information,
confusion operations are performed before location information
is sent to the platform. We assume that the “confused” loca-
tion set sent to the platform is L̂t = {l̂t1 , l̂t2 , . . . ,

ˆltk}, where
k ≥ |R|; this set includes confused locations and real locations.
In other words, in the map, there are |R| real task locations and
k − |R| confused locations for tasks; therefore, it is difficult for
an attacker to determine, which task locations are real, which is
the basic objective of privacy protection.

C. Dynamic Workers

Suppose the set of workers recruited to perform sensing
tasks is denoted as W = {w1, w2, . . . , w|W|}. These workers
may be smartphone users equipped with sensors that can per-
form sensing tasks; they post their location information Lw =
{lw1 , lw2 , . . . , lw|W|} to the platform, and the platform uses this
information to allocate tasks.

A worker wi (wi ∈ W) may be assigned one task or no task
at all, and if no task is assigned, the worker stays at her current
location lwi

and does nothing. In performing assigned tasks, the
loss of worker resources is divided into two aspects: path loss and
perceptual calculation loss. We assume that the distance from
worker wi to task tj is dist(lwi

, ltj ), where lwi
is the location of
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worker wi and ltj is the location of task tj to be performed by
workerwi. Additionally, the workers assigned to tasks inevitably
consume resources in the process of performing a task; this
consumption of resources is called the cost ci of workerwi ∈ W .
Here, ci = dist(lwi

, ltj ) + α · comi, where comi represents the
computational resources consumed by worker wi to perform a
task. Because the resources consumed to complete any sensing
task are assumed to be the same, comi is a constant. Additionally,
comi has little effect on the cost calculation, so we focus on
the distance cost of a worker performing a task; that is, the
weighting coefficient α is very small. Of course, α can be
changed according to different requirements of the system. For
example, if the perceived computing loss is a large part of
the cost calculation, α can be 3 or 5 or some number greater
than 1.

D. Service Platform

As shown in Fig. 2, the environmental sensing capability
(ESC) module differs from that in the typical system architecture
for MCS [7] and can detect real task locations on the map
generated in step 2. There may be errors in the detection results of
the ESC module due to the existence of obfuscation locations.
The ESC module detects the location information L̃esc

t in the
map; here, L̃esc

t ∈ L̂t. Then, the location distribution of tasks is
estimated based on the detected information L̃esc

t and historical
allocation records, denoted as Lesc

t = {l1, l2, l3, · · · }. The ESC
module analyzes and shares these data with the platform to assist
in assigning tasks by evaluating the task allocation results based
on Lesc

t without knowledge of the real location set Lt.
Acting as an information collector and task distributor, the

platform plays an important role in the overall process. In
each period, first, the platform receives location information L̂t,
Lw, and Lesc

t from requesters, workers, and the ESC module,
respectively. Second, the platform allocates tasks to workers,
and the result of assignment is denoted as Pw

t . Simultaneously,
a low distance cost, high quality, and high fairness should be
achieved in task allocation. The real location distribution of
a task is l̄, and the result of task assignment is p̄. Based on
these variables, the platform can calculate the total cost of the
corresponding task allocation result: Csum(l̄, p̄) =

∑|W|
i=1 ci, and

the corresponding quality calculation is as follows: Qsum(p̄) =∑|W|
i=1 ai +

∑
rj∈R nrj . If workerwi ∈ W is allocated a task and

goes to the corresponding location l, where the ESC module
has detected the task, ai = 1; i.e., l ∈ Lesc

t . In all other cases,
ai = 0.

III. PRIVACY PRELIMINARIES

In this section, the adversary model used by the studied MCS
system is defined, and we describe how to quantify privacy ex-
posure. This information is used to analyze the privacy problem
and assess the effectiveness of the privacy protection method
proposed in the next section.

A. Adversary Model

We assume that there may be malicious adversaries in the
system, who can hack into the components of the system, as

shown in the red parts in Fig. 2. We define the information
observed by the attacker as A. In this article, we consider the
following two types of attack patterns.

1) Indirect Attack: Observation of allocation results. After
obtaining the task assigned from the platform, a dishonest
worker may leakage this information to an attacker. In addition,
an attacker can hack into a worker’s host or service for a rela-
tively long time, and steal a series of task location information.
Or an attacker can manipulate his/her device to be a legitimate
worker and obtain task allocation results assigned to him/her.
The collected information is analyzed comprehensively to infer
the real location information for tasks.

2) Intrusive Attack: Direct observation of the platform. Com-
pared to an indirect attack, the attacker who makes a direct attack
is more powerful, and she can invade the platform where the
task is assigned, potentially eavesdropping on communications
with requesters and the ESC module. Although the location
information sent by requesters to the platform is confused, an
attacker can perform a comprehensive analysis of the confused
locations and ESC measurements and implement an inference
attack based on the real task location information.

B. Privacy Metrics

The existing works on privacy protection mostly use
self-information to measure the degree of privacy disclo-
sure (e.g., [19], [20]). The measurement of privacy by self-
information is usually defined as the gap between the obtained
data and the actual data but does not pay attention to the amount
of information, which is more suitable for measuring the privacy
exposure of data encryption or fuzzy radius mechanisms. Thus,
this article turns attention to mutual information to measure the
degree of task location privacy exposure since the obfuscation
mechanism of adding fake data to a real dataset is adopted.
To better use mutual information in the MCS system, we first
learn the basic definition of mutual information [25]. Mutual
information in information theory is related to the correlation
of information associated with two random variables X and Y .
Mutual information is defined as follows:

I(X,Y ) =
∑
x∈X

∑
y∈Y

P (x, y)log
P (x, y)

P (x)P (y)
. (1)

Mutual information reflects the amount of information con-
tained in a random variable that is related to another variable. The
mutual information value for two unrelated random variables is
zero.

The location information consists of discrete values, and
the mutual information calculation introduced above also aims
at discrete variables. Therefore, the obfuscation mechanism is
adopted in this article to protect the privacy of task location
and ensure that the protected data are still discrete. In this
article, we measure the correlation between the information A
obtained by an attacker and the actual task location information
L. Specifically, based on the task possible location information
published by the requesters, which includes actual locations and
confused locations, a set of possible location combinationsL for
real tasks is genereted. For an indirect attack, the information
obtained by the attacker is the result of task assignment. Workers
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are combined with different locations to create a set of possible
assignment results, and A is a subset of this set. For an intrusive
attack, the information obtained by the attacker is the distribution
of task locations, thus A is a subset of L. Then, the two sets of
discrete values are used to calculate the mutual information.
Here, L and A are discrete random variable sets and L and A
are the corresponding value spaces. Therefore, privacy exposure
(i.e., mutual information) can be expressed by the following
formula:

I(L,A) =
∑
x∈L

∑
y∈A

P (x, y)log
P (x, y)

P (x)P (y)
(2)

=
∑
x∈L

∑
y∈A

P (y | x)P (x)log
P (y | x)
P (y)

. (3)

A small mutual information value reflects a low level of
privacy leakage or excellent privacy protection; in contrast,
larger mutual information values indicate considerable privacy
leakage issues.

IV. OPTIMIZATION OF PRIVACY

Considering the privacy of task locations and system util-
ity, a multiobjective optimization problem is proposed. The
mutual information value in privacy quantification is usually
relative rather than absolute. It is difficult to define the range
of mutual information values that corresponds to acceptable
privacy exposure. In contrast, the scope of system utility is
well defined, and defining thresholds is relatively simple and
intuitive. Therefore, in the optimization problem in this article,
the goal is to minimize privacy leakage, and system utility is
used as a constraint condition for the optimization goal.

To optimize task location privacy, we use mutual information
as the privacy metric of the system for the following reasons.
First, mutual information represents an information theory-
based measure of the correlation between two random variables,
and a low mutual information value represents low privacy leak-
age. Second, the mutual information related to the actual task
locations and the observed attacker information are independent
of the adversary models adopted by the system. In other words,
mutual information is useful in privacy quantification based on
various adversary models. Thus, it is feasible to perform privacy
quantification with mutual information.

A. Optimization Goal

Unlike previous works on privacy protection, this article
focuses on protecting the privacy of task locations. First, task lo-
cations are protected by an obfuscation mechanism, and then the
degree of privacy exposure is quantified by mutual information.
However, the privacy protection mechanism comes at the cost
of some system utility. To achieve a tradeoff between system
utility and task location privacy, the optimization objective is
expressed as follows:

min I(L,A) =
∑
x∈L

∑
y∈A

P (x, y)log
P (x, y)

P (x)P (y)
(4)

subject to

∑
y∈A

P (y)Qsum(y) ≥ Qw, ∀x ∈ L (5)

∑
y∈A

P (y | x)Csum(x, y) ≤ Cw, ∀x ∈ L (6)

P (y | x) ≥ 0, ∀x ∈ L, ∀y ∈ A (7)∑
y∈A

P (y | x) = 1, ∀x ∈ L. (8)

Equation (4) shows the optimization goal of the problem: min-
imizing task location privacy exposure. Equation (5) is a con-
straint on the quality and fairness of task completion, where Qw

is the lower bound of the constraint. Equation (6) is a constraint
on the resources consumed by workers after task assignment,
and Cw is the upper bound of the constraint. Equations (5) and
(6) are combined to constrain the utility of the system. Equations
(7) and (8) ensure that the probability distribution is valid. These
constraints are linear, and the mutual information is convex
for conditional probabilities, so this optimization problem is a
convex optimization problem.

B. Optimal Solution

For general optimization problems with equality and in-
equality constraints, Karush–Kuhn–Tucker (KKT) conditions
are necessary to obtain the optimal solution. For the inequality-
constrained optimization problem in this article, the KKT con-
ditions of the optimal solution are as follows:

P (x)log

(
P ∗(y | x)
P (y)

)
+ Csum(x, y)μ

∗
x − μ∗

x,y − μ∗
w

× P (x)Qsum(y) + λ∗
x = 0 (9)

μ∗
w(Qw −

∑
y∈Y

P ∗(y)Qsum(y)) = 0 (10)

μ∗
x(−Cw +

∑
y∈Y

Csum(x, y)P
∗(y | x)) = 0, ∀x ∈ L (11)

μ∗
x,yP

∗(y | x) = 0, ∀x ∈ L, ∀y ∈ A (12)

μ∗
w ≥ 0, μ∗

x ≥ 0, μ∗
x,y ≥ 0 (13)

where * represents the optimal solution;μ∗
w andμ∗

x are the multi-
pliers of the task completion quality and worker cost constraints
in the system utility context, respectively; and μ∗

x,y and λ∗
x are

constraint multipliers that guarantee the validity of conditional
probability distributions.

Lemma 1: P ∗(y | x) be any optimal solution to the optimiza-
tion problem described in the previous section. If the utility
constraint is not active, i.e., if∑

y′∈L
P ∗(y′)Qsum(y

′) > Qw

then

P ∗(y | x) = P ∗(y), ∀x ∈ L, ∀y ∈ A

i.e., the adversary observations produced by the optimal strategy
based on obfuscation are independent of the actual task location
state.



DONG et al.: OPTIMIZING TASK LOCATION PRIVACY IN MCS 2767

Proof: The proof is established by contradiction. Suppose
P ∗(y | x) �= P ∗(y) for some x and y. Specifically, since
P ∗(y) =

∑
x∈L P

∗(y | x)P ∗(x), there is an x and y such that

P ∗(y | x) > P ∗(y) (14)

or an x′ such that P ∗(y | x′) < P ∗(y). Furthermore, given (8),
then (14) implies there is some y′ such thatP ∗(y′ | x) < P ∗(y′).
Let y0 be a report state that does not compromise privacy. First,
if for some x′ we have

P ∗(y0 | x′) < P ∗(y0) (15)

for some small ε > 0, we can construct a new reporting strategy
P ′ that satisfies P ′(y0 | x′) = P ∗(y0 | x′) + ε and P ′(y | x′) =
P ∗(y | x′)− ε where have (14), and where P ′ = P ∗ otherwise.
Since y0 has no effect on the system and constraint (5) is not
tight, P ′ satisfies the constraints of the optimization problem
and strictly reduces the mutual information by construction. This
also holds for the case ofP ∗(y0 | x′) > P ∗(y0) since this implies
(15) for some x′.

The second and only other possible case is that P ∗(y0 | x′) =
P ∗(y0), ∀x ∈ L. In this case, (14) holds for some y �= y0. We
construct a P ′ starting with P ∗ and set P ′(y0 | x) = P ∗(y0 |
x) + ε. We then iteratively set P ′(y | x) = P ∗(y | x)− ε for
∀x ∈ L and some y that satisfies (14). Similar to the first case,
this construction yields a valid P ′ that satisfies the constraints
of the optimization problem and strictly reduces the mutual
information by construction. Since in both cases, we can con-
struct a solution that strictly reduces the mutual information,
the statement that P ∗ is an optimal solution that satisfies P ∗(y |
x) �= P ∗(y) for some x and y must be a contradiction.

Theorem 1: The optimal solution to the optimization problem
in this article is

P ∗(y | x) = (P ∗(y)exp(μ∗
wQsum(y)− Csum(x, y)μ

∗
x/P (x)))/

(
∑
y′∈A

P ∗(y′)exp(μ∗
wQsum(y

′)− Csum(x, y
′)μ∗

x/P (x))).

(16)

Proof: After analyzing the above KKT conditions, (9) can be
rewritten as

P ∗(y | x) = P ∗(y)exp((μ∗
x,y + μ∗

wP (x)Qsum(y)

− Csum(x, y)μ
∗
x − λ∗

x)/P (x)).
(17)

By applying (8) to (17), we obtain∑
y′∈A

P ∗
( y

′)exp((μ∗
x,y + μ∗

wP (x)Qsum(y)

− Csum(x, y)μ
∗
x − λ∗

x)/P (x)) = 1

(18)

which can be written as

exp(λ∗
x/P (x)) =

∑
y′∈A

P ∗(y′)exp(μ∗
wQsum(y)

+ (μ∗
x,y − Csum(x, y)μ

∗
x)/P (x)).

(19)

By substituting (19) into (17), we obtain the result in (16).
In a real situation, the vast number of possibilities makes

it impossible to list all potential results for assigned tasks.
However, we can use theoretically optimal strategies to inform
the development of comparatively practical strategies.

V. SELECTED ALLOCATION CODEBOOK

A. Selected Allocation Codebook

When the multiobjective optimization formula described
above is solved, a computational method for selecting task
assignment results satisfying the constraints can be obtained,
which requires calculating all possible combinations of task
assignment results. Considering the large number of workers
and many potential allocation results, in the process of task
allocation, it is impossible for the platform to calculate the cost
and utility of each allocation result and then select the optimal
result. Notably, the corresponding computational burden would
be enormous. Moreover, as the number of tasks and the number
of workers increase, the quantity of possible task allocation
results exponentially increases. The practical privacy protection
approach we propose is to sample the task allocation result space
and construct a codebook that can be used to allocate tasks; this
codebook is called the SAC. It is worth noting that the codebook
only contains partial task distribution results, so the SAC method
can protect privacy to some extent against indirect attacks. At
the same time, even though the size of the codebook is limited,
the SAC method designed to select task assignment results from
the codebook does not significantly degrade the quality of the
final result.

Codebooks are generated for a given number of tasks and
workers. Based on the locations and numbers of tasks and
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workers, the allocation of tasks can be performed. A codebook
contains multiple codewords, each of which is one result of
task allocation. The size of a codebook can be changed without
limitation, so we can use the codebook size as a design param-
eter in the following method. The main objective of the SAC
method is to calculate the cost consumption and system utility
of each codeword in the codebook, determine the corresponding
weights, and select an appropriate codeword according to the
weight results.

B. Construction and Use of Codebooks

Algorithm 1 describes the process of codebook construc-
tion. In the usual method, codebook construction is a process
of randomly selecting a certain number of codewords from a
selectable range. However, a major drawback of this random
approach is that the results can be either good or bad, depending
on sheer luck. Therefore, a new method is proposed to select
codewords for codebooks, and the concept of the number of
codebook optimization steps is introduced. The number of code-
book optimization steps refers to the replacement and selection
of codewords through many rounds of random selection to im-
prove the constructed codebook. First, we generate a codebook
Cb by randomly selecting some codewords from the optional
space (lines 2–3). Second, the weights of these codewords are
calculated separately using the following formula (lines 4–5):
w =

∑z
j=0(Qsum(v)− Csum(j, v)), where z is the task state

space and v is the current codeword used to calculate the
corresponding weight. Finally, within the number of codebook
optimization steps, random codewords are generated and added
to the alternative set Calt (lines 8–12). The optimal codeword in
the alternative set is selected to replace the worst codeword in
the codebook (lines 13–17). It is worth noting that the eliminated
codewords in each round will not be directly discarded but stored
in the alternative set. A codeword is randomly generated in each
round and added to the alternative set, and then the optimal
codeword is selected to add to the codebook. If the eliminated
codeword in each round is directly discarded, a new codeword is
randomly generated in the next round. Because the codewords
are all randomly selected, this approach can be considered a
random method.

Algorithm 2 describes the SAC method in pseudocode. Once
the codebook is created, the platform uses it to allocate tasks
to workers. The codebook is much smaller than the total task

allocation result space, so it is relatively easy for the platform
to calculate the weight of each codeword in the codebook. In
a real situation, the weight of each codeword in the codebook
is calculated (lines 1–3), and the codeword ci with the largest
weight is selected as the result of the current round (lines 4–5).

C. Complexity Analysis

There are two parameters related to codebook construction,
namely, the codebook size C and the number of codebook opti-
mization steps S . The complexity of codebook construction is
O(S), that is, the size of the codebook optimization steps. After
the codebook construction is complete, only the task assignment
result in the codebook needs to be selected without considering
anything outside the codebook. Therefore, the complexity of the
SAC method is O(C), which is the size of the codebook.

D. Privacy Analysis

This article attempts to confuse opponents with inaccurate
or imprecise positions. Task requesters add fake entries when
uploading their task information, and actual and fake messages
are mixed together to make it difficult to distinguish. When the
ESC module is exploring, there is no guarantee that the data
obtained are entirely correct, so the information it detects is also
challenging to distinguish between true and false. Therefore,
the information obtained by the platform may be true or false.
Whether pretending to be a worker or attacking the platform
data center, the attacker does not directly obtain the actual
task location information. The following content analyzes the
lower limit of mutual information values under the two cases,
according to the activity of tasks in the system.

Theorem 2: When the number of tasks is fixed and known,
if the occurrence of each task location combination and each
task assignment result have an equal probability, the amount of
information in this case is 0.

Proof: Assume that there are Nt task location information
instances uploaded to the platform, and the number of workers
is Nw. Meanwhile, suppose that the number of active tasks is
M , where M ≤ Nt. Therefore, it can be calculated that there
are n1 = Nt!

M ! possible combinations of correct tasks, while for
M active tasks (considering the situation where the worker
chooses not to perform the task), there are m1 = (Nt + 1)Nw

possible results assigned by workers. Since each situation is
equally likely, according to the previous description of mutual
information, the following calculation can be made:

Mut =
∑
n1

∑
m1

1
n1 ∗m1

log
1/(n1 ∗m1)
(1/n1)(1/m1)

= 0. (20)

Mutual information represents the same amount of informa-
tion contained in two random variables. If all the cases are
equally likely to occur, no helpful information can be obtained
from the data, so the mutual information is 0.

Theorem 3: When the number of tasks is unknown, if the
occurrence of each task location combination and each task
assignment result have an equal probability, the amount of
information in this case is 0.

Proof: The assumption is the same as Theorem 2, except that
the number of active tasks is unknown. In this case, there are
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n2 = 2Nt possible combinations of correct tasks and m2 =
(Nt + 1)Nw possible results assigned by workers. The rest of
the proof is the same as Theorem 2.

E. Evaluation of Results

How to measure the performance of the results chosen from
the codebook is also a question we need to consider. In this
article, two different adversary models were mentioned earlier;
for the two adversary models, we calculate the performance of
the result in different ways.

1) For Indirect Attacks: In an indirect attack, the attacker
can only observe the allocation of tasks by the platform. The
codewords stored in the codebook are also the results of task
assignment. Therefore, the performance codeword selection
from the codebook can be considered from two perspectives:
the quality and fairness of task completion and the resources
consumed by workers in the process of task completion. In
terms of quality and fairness, we consider the gap between a
given result and the optimal result, and in terms of resource
loss, we consider the average loss. The sum of the two is a
description of system performance, and the smaller this value is,
the better the selection result. For true task state l̄ and the selected
codeword v, the calculation of performance is expressed as
follows:

performance = (N −Qsum(v)) + (Csum(l̄, v)/wnum) (21)

where wnum is the number of workers and N is the maximum
value of quality and fairness that can be achieved in the ideal
state for fixed numbers of real tasks and workers.

2) For Intrusive Attacks: For intrusive attacks, powerful at-
tackers directly hack into the platform database and observe
the distribution of the real locations of tasks. Therefore, system
performance needs to be measured by a different indicator than
that used in an indirect attack. Here, we only need to consider the
gap between the observed situation and the real situation, that is,
how many observed tasks are associated with the correct location
and correspond to the real situation. The specific calculation is
as follows:

utility = tnum − obsnum (22)

where tnum is the number of tasks and obsnum is the number of
correct task locations observed. It is important to note that the
utility defined in this case is only related to quantity, so the value
can only be an integer.

VI. PERFORMANCE EVALUATION

To verify the performance of the SAC method, a simulation
experiment is designed and discussed based on different attack
models.

A. Simulation Setting

We consider an MCS task allocation problem in a 5 km by
5 km area and divide the area map into regions 1 km in length
and 1 km in width. The worker and task locations are randomly
distributed and not completely fixed. We use small areas of
the map to represent task location coordinates, and they are

numbered from top to bottom, left to right and one tonum, where
num represents the total number of locations and workers. In
this article, considering two different adversary models, there
are two attacker knowledge cases based on the number of real
tasks: the number of tasks is fixed and known, and the number of
tasks is unknown. These two situations are analyzed according
to different adversary models. Considering that the detection
results of ESC are not completely accurate, the case in which
the ESC false detection rate is 1% is considered in this article,
and the figures of the corresponding results are drawn.

In actual experiments, even a small number of tasks and
workers can combine to produce a large number of results.
Therefore, a convenient and straightforward method is needed
to number or name each result to facilitate the experiment. In
this article, we use the decimal equivalent of binary numbers to
represent the various possible cases, and suppose there are three
possible task positions and four workers. Each task location is
represented by a binary number, where 1 indicates a real task
and 0 means there is none. For example, if the first and second
positions have a task, and the third position does not, the binary
representation of this situation is 011 and is 3 when converted to
decimal. Each worker in the task allocation result is represented
by two binary numbers representing the task number allocated
to the worker. For example, the result is that worker 1 and
worker 4 are assigned to position 1 (the position represented
by 01) to perform the task, while worker 2 and worker 3 are
assigned to position 2 (the position represented by 10), which
can be encoded as the binary number 01101001 and converted
to decimal as 105.

B. For Indirect Attacks

In indirect attacks, the attacker may appear to be a worker
or break into the workers’ system to observe how the platform
allocates tasks and workers, i.e., A = Pw

t .
In addition to the SAC method, we also assess an optimiza-

tion method and a method in which Gaussian noise is added
for comparison. The optimal method chooses the best result
among all possible task allocation results with only false location
information added and is similar to the enumeration method.
In the second method, Gaussian noise with a mean value of
0 and variance of 3 is added to the task location information.
These two methods calculate and select among all possible task
assignment results so that they always obtain the best result
under their respective settings. Therefore, the result does not
change with the number of codebook optimization steps but only
serves as a reference value for the SAC method. There are two
design parameters in the experiment: the codebook size and the
number of codebook optimization steps. Experiments with three
different codebook sizes, namely, 4, 8, and 16, are performed.
Here, the number of codebook optimization steps of 0 means
that the codewords in the codebook are randomly selected.

1) The Number of Tasks is Fixed and Known: Suppose there
are two tasks: that is, in each period, there are sensing tasks that
can be performed at two of all possible task locations on the
map.

Fig. 3(a) shows the effectiveness of task allocation obtained
based on varying numbers of codebook optimization steps and
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Fig. 3. For indirect attacks and for different numbers of codebook
optimization steps, codebook sizes, and numbers of tasks: (a), (c) per-
formance of the task allocation scheme; (b), (d) the level of privacy
exposure.

different methods. It should be noted that the optimal method
and Gaussian mechanism approach do not involve codebook
optimization, and they are compared with the SAC method;
therefore, the corresponding results do not change as the number
of codebook optimization steps varies. As shown in the figure,
for the same number of codebook optimization steps, the larger
the codebook size is, the better the final result. Notably, a larger
codebook contains more choices than a small codebook. As the
number of codebook optimization steps increases, better code-
words are retained to generate better codebooks, so the results
obtained by the SAC method become increasingly better. The
optimal method always obtains the best result, and the results
of the Gaussian mechanism approach rank second. Fig. 3(b)
shows the result of mutual information, that is, the degree of
privacy exposure obtained with different methods. The larger
the codebook is, the more information it contains, and the larger
the value of mutual information. Because the optimal method
and Gaussian mechanism approach choose among all the results
of assigned tasks, their mutual information values are large.

2) The Number of Tasks is Unknown: In some cases, the
number of tasks is unknown because each of the task locations
on a map may or may not have a task, so the exact number of
tasks is unknown. Other settings are the same as in the previous
section. Similarly, Fig. 3(c) shows that for the same number of
codebook optimization steps, the larger the codebook size is,
the better the final result will be. As the number of codebook
optimization steps increases, the results obtained by the SAC
method improve. It can be concluded from Fig. 3(d) that the
smaller the codebook is, the smaller the privacy exposure level.

The performance and mutual information performance in-
dexes are comprehensively considered to create Fig. 4(a) and
(b). Recall that zero mutual information represents maximum
privacy protection and the minimum performance value repre-
sents maximum system utility, so operations in the lower-left
corner of the figure are optimal. As illustrated, the SAC method
achieves a tradeoff between performance and privacy protection,
regardless of whether the number of tasks is fixed and known

Fig. 4. Task allocation strategy comparison for an indirect attack:
(a) the number of tasks is fixed and known and (b) the number of tasks
is unknown.

Fig. 5. For intrusive attacks and for different numbers of codebook
optimization steps, codebook sizes, and numbers of tasks: (a), (c) per-
formance of the task allocation scheme; (b), (d) the level of privacy
exposure.

or unknown. Although the optimal method and Gaussian mech-
anism approach guarantee utility, privacy exposure is a serious
issue. In contrast, the SAC method performs slightly worse in
terms of system performance but somewhat better in terms of
privacy protection.

C. For Intrusive Attacks

Intrusive attacks are different from indirect attacks in that
the attacker in this adversary model is more powerful and can
directly invade the platform database. Therefore, the attacker
obtains information regarding whether there is a task associated
with the corresponding location, i.e., A = L̂t,Lesc

t .
1) The Number of Tasks is Fixed and Known: The attacker

in an intrusive attack directly invades the database to directly
obtain the information related to task locations. Similarly, if
there are two sensing tasks that need to be performed, because
the result space is small, the number of codebook optimization
steps will be greatly limited. Therefore, the number of codebook
optimization steps is not considered here, and the SAC method
uses two different codebook sizes: 2 and 3.

Fig. 5(a) shows the utility of the results of the optimal method
for different codebooks. It can be concluded that the utility
of the result is related to the size of the codebook. The larger
the codebook is, the more options there are, and the better the
result. Based on the information shown in Fig. 5(b), the larger
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Fig. 6. Task allocation strategy comparison for an intrusive attack:
(a) the number of tasks is fixed and known; (b) the number of tasks
is unknown.

Fig. 7. The false detection rate is 1%: (a), (c) the number of tasks is
fixed and known; (b), (d) the number of tasks is unknown. (a) For indirect
attacks. (b) For indirect attacks. (c) For intrusive attacks. (d) For intrusive
attacks.

the codebook is, the more information it can contain, suggesting
that the value of mutual information is high and the effectiveness
of privacy protection is poor.

2) The Number of Tasks is Unknown: Since the number of
tasks is unknown, there are eight possible results. Similarly, due
to the small result space, the number of codebook optimization
steps is limited and not considered here. Compared with that in
the case in which the number of tasks is fixed and known, the
result space is slightly larger in the case in which the number
of tasks is unknown. Therefore, we consider three different
codebook sizes for the SAC method: 2, 4, and 6.

The conclusions obtained from Fig. 5(c) and (d) are the same
as those described earlier. For a large codebook, the utility of the
result selected from the codebook is high, but privacy protection
is poor.

Fig. 6(a) and (b) are based on the two experimental indicators.
Again, operations in the lower-left corner of the graph are
optimal. As shown in the two figures, the optimization method
achieves the best utility, but the mutual information value is
large and the privacy protection result is poor. Although the SAC
method loses some utility value in comparison, privacy protec-
tion is considerably improved. Therefore, it is concluded that the
SAC method achieves a tradeoff between system performance
and privacy protection.

In addition, Fig. 7 shows the results of two adversary models
when the ESC false detection rate is 1%. As seen from the

figures, the mutual information when the false detection rate
is 1% is smaller than that when the false detection rate is 0%,
as described above. This is because error detection helps to
hide some of the actual information. The performance of the
allocation result is slightly worse because the selection of the
allocation result based on the error detection information will
not produce a correct or better result.

VII. CONCLUSION

In this article, we first discuss location privacy protection for
tasks in MCS systems. The concept of mutual information in
information theory was applied to measure the degree of privacy
exposure in such systems. Using an obfuscation mechanism,
a general MCS model was designed to protect task location
privacy. However, to some extent, the obfuscation mechanism
reduces the quality of data published by the requester to the
platform. Therefore, an optimization problem was proposed,
the optimal solution is theoretically derived, and the optimal
solution to the task allocation problem was obtained. The SAC
method proposed in this article avoids many computational
processes and achieves efficient sensing task allocation. The
simulation results showed that the proposed approach achieves
a tradeoff between task location privacy protection and system
utility. Considering that tasks are heterogeneous, building a
more efficient task privacy protection model and task assignment
method to improve the performance of task assignment results
in the MCS system is our future work.
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