
Cooperative Game Model of Delegation Computing:
Verifier Separated from Calculators

1st Duo Zhang
State Key Laboratory of Public Big Data,

College of Computer Science and Technology,
College of Mathematics and Statistics

Guizhou University
Guiyang, China

email: sxzd0816@163.com

2nd Youliang Tian
State Key Laboratory of Public Big Data,

College of Computer Science and Technology,
Institute of Cryptography and Date Security

Guizhou University
Guiyang, China

email: youliangtian@163.com

3rd Linjie Wang
State Key Laboratory of Public Big Data,

College of Computer Science and Technology
Guizhou University

Guiyang, China
email: wanglinjie−66@hotmail.com

4th Sheng Gao
School of Information,

Central University of Finance and
Economics,

Beijing, China
email: sgao@cufe.edu.cn

5th Jianfeng Ma
School of Cyber Engineering,

College of Computer Science and
Technology, Xi’dian University

Xi’an, China
email: jfma@mail.xidian.edu.cn

Abstract—In cloud computing, the delegation computation
service is required because end users usually are resource-
constrained, and at the same time the correctness of computing
results needs to be verified. However, all the existing and available
technologies have a high cost to verify which is the main problem
faced by the delegation computing under the cloud platform.
In order to address this issue, based on the game theory and
a smart contract, we construct three protocols. The client and
the calculator sign the Prisoner’s Protocol to incentivize correct
computation by asking the calculator to pay a deposit upfront;
The client and the verifier sign the Long-acting Mechanism
Protocol to ensure the validity of the verification results; The
calculator and the verifier sign the Collusion Protocol to make
collusion the most profitable strategy for all colluding parties.
Through the combination of these protocols, the work is realized
by separation the computing task and the verification task, and
the heavy verification task is avoided. Finally, the performance
analysis of the results shows that the combination of all the
protocols not only solves the problem of verification complexity
in the traditional delegation computing, but also guarantees the
benefit of the honest player.

Index Terms—Cloud computing, Smart contract, Game theory,
Rational delegation computing, Verification complexity

I. INTRODUCTION

In the age of big data, a large amount of data needs to be
computed and stored, which easily leads to a serious shortage

This work is supported by Key Projects of the Joint Fund of the Na-
tional Natural Science Foundation of China under Grant No.U1836205; the
National Natural Science Foundation of China under Grant No.61662009,
No.61772008; the Guizhou Province Science and Technology Major Special
Plan No.20183001; the Guizhou Provincial Science and Technology Plan
Project under Grant No.[2017]5788; the Ministry of Education-China Mobile
Research Fund Project under Grant No.MCM20170401; the Guizhou Uni-
versity Fostering Project No.[2017]5788; Research on Key Technologies of
Blockchain for Big Data Applications under Grant No.[2019]1098; Founda-
tion of Postgraduate of Guizhou Province (No.YJSCXJH2019015).

of local resources [1]. The emergence of cloud computing
technology has well solved this problem. In the cloud comput-
ing, resource-constrained users delegate their own computing
and data to the platform provided by cloud services for
processing and storage, thus bringing many benefits to users
[2] [3]. However, delegation computing under cloud platforms
urgently needs verifiability: the cloud service providers differ
from users in that their benefit may point to different di-
rections, and users cannot trust the cloud completely. For a
variety of reasons, clients often need to verify the correctness
of the computing results. At the same time, the privacy of users
and the correctness of the results are facing serious security
challenges. Therefore, it is extremely urgent and realistic
significance to introduce rational players and realize verifiable
delegation task at a reasonable cost through the game theory
and the smart contract.

Over the last few decades, a lot of research have been done
on the cloud platform security delegation technology. Initially,
researchers wanted to design a general computing frame-
work to implement delegation computing for all problems.
Gentry [4] proposed a full homomorphic encryption (FHE),
then Gennaro et al. [6] first proposed a general delegation
computing scheme based on FHE and Encrypted Boolean
Circuit [5], which not only can effectively protect user privacy,
but also can verify the results of the server. In addition,
Chung et al. [7] proposed an improved scheme, which reduced
the complexity of the general delegation computing scheme.
However, because the FHE algorithm contains extremely com-
plex computing operations and large-scale circuit size, the
schemes of Gennaro et al. and Chung et al. have very high
computing complexities. Therefore, researchers began to turn
to the delegation computing scheme for specific problems,

62



hoping to design practical and available schemes.
So far, there are a lot of security delegation computing

schemes for specific problems. Atallah et al. [8] first proposed
a secure delegation computing scheme for matrix operation.
Blanton et al. [9] proposed an improved sequence security
delegation scheme. Hohenberger et al. [10] proposed a secure
delegation computing scheme for the modular exponential
operation. However, these schemes need two non-collusive
servers to implement secure the delegation computing, which
cannot effectively resist collusive attacks among servers. To
address this issue, Atallah et al. [11] proposed a secure dele-
gation computing scheme for matrix multiplication based on
Shamir’s secret sharing technology [12]. The scheme has only
one server and there is no collusion attack. However, the secret
sharing technology makes the scale of the delegation matrix
multiplication problem increase sharply which lead high com-
munication load. Although there are many shortcomings in
the above-mentioned secure delegation computing schemes, it
points out the further research directions of security delegation
computing: Protected user’s privacy, Verified the results of
delegation computing and Resisted collusion attacks among
servers.

Recently, great efforts have been made in the design of
the delegation computing scheme and some important results
have been achieved. For example, Wang et al. [13] proposed a
secure delegation computing scheme for linear programming
under the cloud platform. Then, the focus of the follow-up
research on secure delegation computing scheme has evolved
to reduce the computing complexity of the scheme as much as
possible [14] [15] [16] [17] [18]. Because large-scale comput-
ing problems are common in practical applications, delegation
computing schemes for different problems have been contin-
uously researched [19]. Other research work related to secure
delegation computing on cloud platform mainly includes: Yao
[5] proposed a secure multi-party computation, which makes
multiple independent computing players get together to solve
problems and ensures that input values are not leaked to
other players [20] [21] [22]. Golle et al. [23] recognized
the reliability of the cloud platform’s delegated computing
results by inserting some prior knowledge into the delegated
computing problem. Du et al. [24] uses a grid computing
to detect the cheating behavior of cloud platform. Zhang et
al. [25] design a secure delegated storage scheme based on
game theory, which can effectively reduce the probability
of audit disputes between users and cloud platforms. In a
word, some current research results related to the secure
delegate computing cannot be directly applied to the delegate
computing of large-scale computing problems.

A. Contribution

In this paper, we propose a rational delegation computation
fair protocol. The contributions of this paper are as follow:

• We propose a rational delegation computing game model,
separate the computing task from the verification task and
construct a three-player game model, so that the client

can use the calculator and the verifier to complete the
delegation task.

• The smart contract is introduced to realize the economic
incentive mechanism to generate the benefit contradiction
and distrust between the two players, so as to prevent
the two players from colluding to cheat the client under
the rational choice and realize the reliability of the
computation results.

• In the rational delegation computing scheme, we formally
analyze the game generated by the sub-protocol, give
the conditions for the existence of the Nash equilibrium
solution, and prove the effectiveness of these protocols
under reasonable assumptions in order to ensure the
benefits of honest calculators.

B. Organization

The rest of the paper is organized as follows: Some pre-
liminaries are given in Section 2. In Section 3, we propose
the system ideal model, adversary model and the system
architecture of rational delegation computation fair protocol.
The rational delegation computation fair protocol are presented
in Section 4. The performance comparison and theoretical
analysis are discussed in Section 5. Finally, we give a brief
conclusion.

II. PRELIMINARIES

In TABLE I , we present notations mainly used in this paper.

TABLE I
THE PARAMETERS USED IN THIS PAPER

Symbol Significance

w The amount that the client agrees to pay to the calculator for
computing the task.

v The amount that the client agrees to pay to the verifier for
computing the task.

c The cloud’s cost for computing the task.
d The calculator deposit a cloud needs to pay to the client in

order to get the job.
t The deposit the colluding parties need to pay in the collusion

agreement.
b The bribe paid by the calculator of the collusion to the verifier

in the collusion agreement.
m The verifier deposit a cloud needs to pay to the client in order

to get the job.

• u ≤ w, w ≥ c, u ≥ c, c > b
• t < c+ d, d > 2t, m > v + t+ b, t < b, T1 < T2 < T3.

III. IDEAL MODEL AND ADVERSARY MODEL AND SYSTEM
ARCHITECTURE

A. Adversary Model

In the rational delegation computing model, we consider the
verifier to be an honest player, which provides the client with
the correct verification results. In addition, the client is an
honest player, which provides a meaningful computing task
and strictly follow the protocol. However, the verifier and
calculator are also interested to compute data belonging to
other parties. From this point of view, we introduce a rational
adversary P ′ in our model, i.e. the verifier is a rational player.
The goal of P ′ is to gain the trust of the client and obtain

63



the benefit of the calculator, his final results has the following
capabilities:
• P ′ may eavesdrop all communications to obtain the

computations;
• P ′ may compromise the calculator to guess the verifi-

cation value of the all computation outsourced from the
client;

• P ′ may compromise the verifier to guess the computation
value sent from the client.

The rational adversary is, however, restricted from com-
promising both the client and calculator. We remark that
such restrictions are typical in adversary models used in the
delegation computing.

B. System Architecture of Rational Delegation Computation
Fair Protocol

In fact, the client needs to call TTP because of resource
constrained, but the cost of calling TTP is often high, so
the client is less willing to call TTP. In order to address this
issue, the client delegates the computation and validation tasks
to the calculator P1 and verifier P2, respectively. It assumes
that the P1 and P2 have the same computing power and
can complete the computing tasks independently. However,
the calculator P1 often takes some measures to reduce the
computing cost and bribe the verifier P2, thus easily creating a
prisoner’s dilemma model between them. i.e. the calculator P1

and verifier P2 collude to calculate and get higher returns than
the honest calculation, but they know that collusion is unstable.
Because whichever side initiated the collusion was seen as
a trap, the other side always deviated from it. In order to
prevent this phenomenon, we combine intelligent contract and
game theory to put forward a rational delegation computation
fair protocol to ensure the reliability of calculation results.
System Architecture of Rational Delegation Computation Fair
Protocol. The system architecture of the rational delegation
computation fair Protocol is shown in Fig.1 below.

Fig. 1. System Architecture of Rational Delegation Computation Fair Protocol

The specific process is as follows.
• The client and P1 conclude a contract, trying to stimulate

the correct computing by requiring the P1 to pay the
deposit in advance. If the act of P1 is honest, the deposit
will be refunded; if the act is dishonest, the deposit will
be owned by the client.

• The client and P2 conclude a betrayal contract and tried
to sabotage the conspiracy with P1 through additional
incentives and penalties. The purpose of this contract is

not to encourage P1 to deviate from collusion, but to
encourage P2 to report collusion.

• The P1 concludes a collusion contract with P2, and P1

tries to encourage the conspiracy by paying a certain
amount of bribes to P2. The violating party is punished
simultaneously.

Rational delegation computation fair protocol consists of
three phases: the conclude contracts phase, the computing
phase and the verification phase. The detailed process of the
phases are as follows.
• Conclude contracts phase

1) The client signs contracts π1 and π2 with the
calculator P1 and verifier P2, respectively, which
is public.

2) The calculator P1 and verifier P2 conclude collusive
contracts π3 secretly.

• Computing phase
1) The client sends computing task x, function f(·) to

the P1.
2) The P1 receives computing task x, function f(·).

Then f1(x) is computed.
3) The P1 sends computing result f1(x) to the client.

• Verification phase
1) The client sends computing task x, function f(·) to

the P2.
2) The P2 receives computing task x, function f(·),

f1(x). Then f2(x) is computed.
3) The P2 sends verification results r = f1(x)

⊕
f2(x)

to the client.
4) The client pays corresponding fees to P1, P2 ac-

cording the result from P2.

IV. RATIONAL DELEGATION COMPUTING FAIR PROTOCOL

Protocol 1: Prisoner’s contract π1 and its implementation
process:
• The client concludes the prisoner’s Contract π1 and the

long-term mechanism contract π2 with the calculator P1

and the verifier P2, respectively;
• The calculator P1 concludes the collusion contract π3

with the verifier P2;
• The calculator P1 agrees to compute function f(·) with

input x, the verifier P2 agrees to verify the result f1(x)
computed by the calculator P1;

• The time limit is T1 < T2 < T3, which is agreed by the
client, the calculator P1 and the verifier P2;

• The entrusting party agrees to pay to the calculator P1

for ensuring that the result f1(x) is computed correctly
and timely;

• The client agrees to pay to the verifier P2 for ensuring
that result f1(x) of the calculator P1 is verified correctly
and timely;

• As a constraint, both the calculator P1 and the verifier
P2 must pay a deposit when signing the contract π3, and
the deposit is held by the smart contract;

64



• The calculator P1 and the verifier P2 must pay the deposit
before T1. If either party fails to do so, the contract will
be terminated and deposit will be refunded;

• The calculator P1 must pass the computing result f1(x)
before time limit T2;

• The client receives the computing result f1(x) from the
calculator P1 before T2. The client performs the following
operations:

1) The client sends the input x along with the calcu-
lation functions f(·) and f1(x) to the verifier P2;
if the verification result is not delivered before T3,
the client will deduct the deposit and pay to the
calculator P1;

2) If the verification result is delivered before T3 and
the verification result is r = 0, the client must pay v
to the calculator P1 and the verifier P2, respectively,
and refunded deposits;

3) If the verification result is delivered before T3 and
the verification result is r = 1, the deposit d paid
by the calculator P1 shall be owned by the client,
and the client shall reward d/2 to the verifier, and
the contract π1 shall be terminated.

• If the client does not receive the computing result f1(x)
after T2, the deposit d will be owned by the client and
the contract π1 will be terminated.

Actually, despite the high fines, the conspirators can still
strike secret protocols to redistribute profits and punish those
who stray first from the collusion. Of course, the client does
not want a collusion protocol between the calculator P1 and
the verifier P2. If a collusion protocol exists, the client would
prefer that verifier P2 uncover the calculator P1 that initiated
the collusion. Therefore, the client and the verifier P2 also
need to sign a long-term mechanism contract π2.

Protocol 2: Long-term mechanism contract π2 and its
implementation process:

• The client concludes a long-term mechanism π2 contract
with the verifier P2 before T2;

• The verifier P2 only concludes a collusion contract π3

with the calculator P1, and the client agrees to compen-
sate the verifier P2 for the loss of the collusion contract
π3 under appropriate circumstances;

• The verifier P2 must deliver the verification result before
T3. If the result is not delivered, the client will deduct
the deposit m;

• As a necessary condition for long-term cooperation, the
client must pay a deposit b+ t+ d/2 to the verifier P2,
which is equal to the maximum amount of possible loss
in the conspiracy contract plus incentives. The deposit is
held by a smart contract;

• If the verifier P2 delivers the verification result r = 1
before T3, the client pays the reward d/2 in order to
encourage the verifier P2;

• If the verifier P2 delivers the verification result r = 0
before T3, the client pays v to the verifier P2 and refunds
the deposit m;

• When the client discovers that the verifier P2 did not
report or misreported conditions, besides deducting de-
posit m, he also broadcasts the dishonest behavior of the
verifier P2 on the block chain by using the smart contract
technology, which makes it impossible for the verifier P2

to accept computing or verification tasks in the future.
In order to report the collusion promptly, two procedures

should be taken into account:
• The collusion contract π3 is signed before the collusion

is reported to the client.
• The collusion contract π3 is signed only after the long-

term mechanism contract π2 is signed with the client.
Realistically, the collusion contract π3 provides additional

rules in addition to normal transactions, which will affect the
remuneration of both parties and provide profitable strategies
for the collusive verifier.

Protocol 3: Collusion contract π3 and its implementation
process:
• The contract π3 is signed by the calculator P1 and the

verifier P2, and the calculator P1 is the initiator of the
conspiracy;

• The verifier P2 agrees to provide r = 0 as verification
result of the protocol π1;

• As a necessary condition, the calculator P1 must pay
t + b to the verifier P2, and the verifier P2 must pay
t before they sign the collusion contract π3. This part of
the deposit is held by the smart contract;

• The calculator P1 and the verifier P2 must pay the above
amount before T2. If any participant fails to do so, the
contract π3 will be terminated and the deposit paid will
be refunded;

• After the completion of the prisoner’s contract π1, the
balance in the contract π3 will be treated as follows:

1) If both the calculator P1 and the verifier P2 abide by
the contract π3 which means the verifier P2 outputs
the permanent result r = 0. Then the calculator P1

pays the bribery b to the verifier P2 and refunds the
deposit of both parties;

2) If only the calculator P1 violates the contract π3,
which means the verifier P2 outputs the permanent
result r = 1, the calculator confiscates the deposit t
paid by the verifier P2;

3) If only the verifier P2 abides by the contract π3

which means whether the calculator P1 complies
with the contract π3 or not, the verifier P2 still
outputs the permanent result r = 0. Then the
calculator P1 pays bribery b to the verifier P2 and
the deposit is refunded to both parties;

4) If both the calculator P1 and the verifier P2 violated
the terms of the contract π3, the deposit of both
parties shall be refunded.

When the collusion contract π3 is signed, the time result
will be grasped, otherwise it is invalid. There are absolute
advantages for the verifier P2 in the process of contract
execution. In the process of conspiracy, the verifier P2 will

65



receive an additional reward regardless of whether he betrays
the calculator P1 or not, but in the case of the client is least
willing to see the verifier P2. Consequently, the client and
the verifier P2 sign a long-term mechanism contract π2 to
ensure the reliability of the verification result. Furthermore, the
equilibrium remains unchanged. The above execution process
is shown in Fig.2 below:

Fig. 2. The game induced by the prisoner’s contract, the long-term mechanism
contract and the collusion contract.

TABLE II
PAYOFF ANALYSIS OF GAME MODEL

Out r P π1 π2
Cost TotalClau Pay Clau Pay

v12 f1
⊕
f2 = 0

P1

P2
10b

w
v

5d
0
0

c
c

w − c
v − c

v13 f1
⊕
f1 = 0

P1

P2
10b

w
v

5c
−b
b

c
0

w − c− b
v + b

v14 f ′1
⊕
f2 = 1

P1

P2
10c

−d
v+d

5b
t
−t

0
c

−d+ t
v−c−t+d/2

v15 f ′1
⊕
f ′2 = 0

P1

P2
10b

w
v

5a
−b
b

0
0

w − b
v + b

v16 f1
⊕
f2 = 0

P1

P2
10b

w
v

5d
0
0

c
c

w − c
v − c

v17 f1
⊕
f ′2 = 1

P1

P2
10c

−d
v+d

5b
t
−t

c
0

−d− c+ t
v − t+ d/2

v18 f ′1
⊕
f2 = 1

P1

P2
10c

−d
v+d

5b
t
−t

0
c

−d+ t
v−c−t+d/2

v19 f ′1
⊕
f ′1 = 0

P1

P2
10b

w
v

5a
−b
b

0
c

w − b
v − c+ b

v20 f ′1
⊕
f1 = 0

P1

P2
10b

w
v

5c
−b
b

c
0

w − c− b
v + b

v21 f ′1
⊕
f2 = 0

P1

P2
10b

w
v

5a
−b
b

0
0

w − b
v + b

The rational delegation computing model and analysis trig-
gered by three contracts is presented in Fig. 3. The participants
are the calculator P1 and the verifier P2, that is, the verifier
P = {P1, P2}. Although the client is also involved in the
contract, he is honest and has only one deterministic strategy,
he can be eliminated from the game model. The calculator
P1 and the verifier P2 can communicate with each other.
Action set A = {f1(x), f ′1(x), f2(·)}, the first two means that
the calculator P1 sends f1(x) or f ′1(x) before the deadline,
and the last means any action that the verifier P2 may take.
The model has seven information sets: I11 = {v0} and
I11 = {v3, v4, v5} belong to the calculator P1, I21 = {v1},

I22 = {v2}, I23 = {v6, v7}, I24 = {v8, v9}, I25 = {v10, v11}
both of them belong to the verifier P2. u1 and u2 represent the
utility functions of P1 and P2, respectively. The remuneration
of each party is listed below the terminal node. TABLE II
shows the method of calculating the amount of payment.

Theorem: Let m > v + t + b, d > 2t, b < c, the
calculator P1 and the verifier P2 are rational participants, then
the implementation protocol terminates at {v12}.

Proof: In the protocol, the calculator P1 always acts first
as a collusion initiator. If P1 does not initiate an collusion or
P2 rejects the collusion, then π1 is executed because collusion
contract π3 has not been signed. If P2 agrees to collude with
P1, and there is b < c, they will enter different branches.
Since the collusion contract π3 has been signed at this time,
the payment in this branch is totally different from that in the
protocol π1. In this branch, if P2 does not report the collusion
with P1 to the client, it is sure that one of two things are going
to happen, and that is that P1 is going to make an honest
calculation to get the maximum benefit of w − c or collude
with P2 to get the maximum benefit of w − b. Obviously,
the benefits of collusion are greater. At this time, the verifier’s
benefit v+b or v−c−t+d/2 is greater than v−c(d > 2t), but
considering the deterrence of broadcast of personal reputation
on the chain and the deposit m(m > v + t + b), the verifier
P2 signed a protocol π2 with the client. Thus, he chooses to
calculate honestly, and end up at {v21}. In this branch, if P2

chooses to report his collusion with P1 to the client, the best
information {v17} benefit of P2 is v−c+d/2, and the benefit
of P1 is −d− v + t < 0; P2’s best information {v20}, {v21}
benefits are v + b. However, for P1, the benefit w − c− b of
information {v20} is less than that of honest calculation, while
the honest calculation benefit of information {v21} is w − b.
Similarly, the signatory verifier of the protocol π2, P2 will not
choose this strategy.

Furthermore, from the standpoint of considering personal
benefits and future credit development, we can know that in
the case of long-term mechanism contract π2 implementation,
the verifier P2 will not collude with the calculator P1 or tell
his collusion with the calculator P1 to the client. In this case,
even though the calculator initiates the collusion protocol π3, it
receives the best benefit {v13} and {v20}, his income w−c−b
is less than that of the normal calculation. Therefore, for the
sake of personal interests, it is impossible for the calculator
P1 to initiate collusion. In summary, if the calculator and
the verifier are rational participant, the implementation of the
protocol is fairness and will be terminated at {v12} and Nash
equilibrium will be achieved.

V. PERFORMANCE ANALYSIS

A. Performance Comparison

Our work is closely related to [17] and [26], which tackle
this issue of the verifiability of rational delegate computing.
The contrast of information anti-collusion and complexity be-
tween the protocol in this paper and other schemes is presented
in TABLE III. All protocols are implemented by constant
rounds, but they cannot be implemented simultaneously in

66



terms of information integrity and defense against collusion.
However, the protocol in this paper ensures fairness through
smart contract and reliability of verification results through
long-term mechanism contract, and meanwhile reduces the
cost of the client.

TABLE III
PROTOCOLS COMPARISON

Comp Comm Inf ver Anti-
coll

[17] O(nlogn) ≥ 2 completion X ×
[26] O(n) ≥ 2 completion X X
Ours O(n) 2 incompletion X X

B. Theoretical Analysis

To implement the contracts, we will need to resolve the
following challenges [17]: Privacy, Verifiability, Efficiency.

To address the issues, we use a suitable collision resis-
tant hash function. Informally, a commitment scheme is a
two-phase protocol. In the commitment phase, a committer
commits to a value m by choosing a secret s to generate a
commitment Coms(m). The commitment should be hiding,
that is to say, it is infeasible to know m given only Coms(m)
but not s; the commitment should also be binding, that is to
say, it is infeasible to find m′ 6= m and s′ 6= s such that
Coms′(m

′) = Coms(m). Instead of using the plaintext, the
implementation of the contracts needs to handle cryptographic
values and the parties need to run some protocols.

The additional overhead incurred by cryptography is small.
In every contract, each party at most 2 commitments need to
be generated and verified. The size can be further reduced
if point compression is used. As is all known, the cost is
roughly related to the computational and storage complexity
of the function. Therefore, the financial cost of using the smart
contracts is low [17]. Furthermore, the proposed scheme not
only reduces the clients verification task, prevents a collusion
between the calculator and the verifier. A comparative sum-
mary between the three schemes is shown in TABLE III.

VI. CONCLUSION

Verifiability is a very important feature of the rational
delegation computing. To illustrate the Verifiability of the
rational delegation computing, we construct a protocol based
on a smart contract. The calculation and verification tasks are
assigned to a calculator and a verifier, respectively, and the
game model is established between two rational players by
using the smart contract in our protocol. The protocol prevents
the players from collude with each other and returning back
the wrong result, and ensure the benefits of honest calculation.
The client does not need to verify the result of computing any
more, but only pays the players’ fees according to the result
of the feedback from the verifier, which reduces the workload
of the client a lot.

REFERENCES

[1] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and P. Merle, “Elasticity in
Cloud Computing: State of the Art and Research Challenges,” IEEE
Transactions on Services Computing, vol.11, no.2, pp.430-447, April.
2018.

[2] M. Armbrust, A. Fox et al, “A View of Cloud Computing,” Communi-
cations of the ACM, vol.53, no.4, pp.50-58, April. 2010.

[3] L. Zhang, “Editorial: Big Services Era: Global Trends of Cloud Com-
puting and Big Data,” IEEE Transactions on Services Computing, vol.5,
no.4, pp.467-468, June. 2017.

[4] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” In
Proceedings of the Annual ACM Symposium on Theory of Computing,
vol.9, no.4, pp.169-178, June. 2009.

[5] A. Yao, “Protocols for Secure Computings (extensive abstract),” In
Proceedings of Symposium on Foundations of Computer Science, 2010.

[6] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable Com-
puting: Outsourcing Computing to Untrusted Workers,” Lecture Notes
in Computer Science, vol.6223, no.3, pp.465-482, 2010.

[7] K. Chung, Y. Kalai, and S. Vadhan, “Improved Delegation of Computing
Using Fully Homomorphic Encryption,” In Proceedings of International
Conference on Advances in Cryptology, 2010.

[8] M. J. Atallah and J. Li,Secure, “Outsourcing of Sequence Comparisons,”
International Journal of Information Security, vol.4, no.4, pp.277-287,
October. 2005.

[9] M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure
and Efficient Outsourcing of Sequence Comparisons,” Lecture Notes in
Computer Science, 2012.

[10] S. Hohenberger and A. Lysyanskaya, “How to Securely Outsource
Cryptographic Computings,” In Proceedings of International Conference
on Theory of Cryptography, 2005.

[11] M. Atallah and K. Frikken, “Securely Outsourcing Linear Algebra Com-
putings,” In Proceedings of ACM Asia Conference on Communications
Security, 2010.

[12] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol.22, no.11, pp.612-613, November. 1979.

[13] C. Wang, K. Ren, and J. Wang, “Secure and Practical Outsourcing of
Linear Programming in Cloud Computing,” In Proceedings of IEEE
International Conference on Computer Communications, 2011.

[14] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing the Large
Matrix Inversion Computing to a Public Cloud,” IEEE Transactions on
Cloud Computing, vol.1, no.1, June. 2013.

[15] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Cloud Computing Service:
The Case of Large Matrix Determinant Computing,” IEEE Transactions
on Services Computing, October. 2015.

[16] L. Zhou and C. Li, “Outsourcing Eigen-Decomposition and Singular
Value Decomposition of Large Matrix to a Public Cloud,” IEEE Access,
2016.

[17] C. Y. Dong, Y. L. Wang and A. Aldweesh, “Betrayal, Distrust, and
Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud
Computing,” In Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, November. 2017.

[18] X. Chen, X. Huang, J. Li, J. Ma, W. Lou and D. Wong, “New Algorithms
for Secure Outsourcing of Large-Scale Systems of Linear Equations,”
IEEE Transactions on Information Forensics and Security, vol.10, no.1,
pp.69-78, January. 2015.

[19] C. Luo, J. Ji, X. Chen, M. Li, L. Yang and P. Li, “Parallel Secure
Outsourcing of Large-scale Nonlinearly Constrained Nonlinear Program-
ming Problems,” IEEE Transactions on Big Data, pp.13-24, March.
2018.

[20] R. Azaxderakhsh, D. Fishbein et al, “Fast Software Implementations
of Bilinear Pairings,” IEEE Transactions on Dependable and Secure
Computing, vol.17, no.6, pp.605-619, December. 2017.

[21] J. Vaidya, “A Secure Revised Simplex Algorithm for Privacy-Preserving
Linear Programming,” In Proceedings of International Conference on
Advanced Information Networking and Applications, May. 2009.

[22] O. Catrina and S. Hoogh, “Secure Multiparty Linear Programming using
Fixed-Point Arithmetic,” In Proceedings of European Symposium on
Research in Computer Security, 2010.

[23] P. Golle and I. Mironov, “Uncheatable Distributed Computings,” Topics
in Cryptology-CT-RSA, April. 2001.

[24] W. Du, J. Jia, M. Mangal and M. Murugesan, “Uncheatable Grid
Computing,” In Proceedings of International Conference on Distributed
Computing Systems, March. 2004.

[25] Y. Zhang, X. Li and Z. Han, “Third Party Auditing for Service Assurance
in Cloud Computing,” In Proceedings of EEE Global Communications
Conference, December. 2017.

[26] MHR Khouzani, Viet Pham, and Carlos Cid, “Incentive Engineering for
Outsourced Computing in the Face of Collusion,” In WEIS 2014.

67


