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ABSTRACT

The ubiquity of mobile devices has facilitated the prevalence of participatory sensing, whereby ordinary citizens use their
private mobile devices to collect regional information and to share with participators. However, such applications may
endanger the users’ privacy by revealing their locations and trajectories information. Most of existing solutions, which
hide a user’s location information with a coarse region, are under k-anonymity model. Yet, they may not be applicable in
some participatory sensing applications that require precise location information. The goals are seemingly contradictory:
to protect a user’s location privacy while simultaneously providing precise location information for a high quality of
service. In this paper, we propose a method to meet both goals. Through selecting a certain number of a user’s partners,
it can protect the user’s location privacy while providing precise location information. The user’s trajectory privacy can
be protected by constructing several trajectories that are similar to the user’s trajectory in an interval time T . Finally, we
utilize a new metric, called slope ratio, to evaluate the partners’ selection algorithm that we proposed. Then, we measure
the privacy level that the location and trajectory privacy protection mechanism (LTPPM) can achieve. The analysis and
simulation results show that LTPPM can protect the user’s location and trajectory privacy effectively and also provide a
high quality of service in participatory sensing. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The past 10 years have witnessed an increase of three
to four billion of mobile users [1]. Wireless communica-
tion techniques have penetrated very fast, such as wireless
local area network, Third-generation Long-term Evolution,
WiMax, Bluetooth, and Zigbee. With the rapid develop-
ment of mobile devices, the area of participatory sensing
[2] or urban sensing [3] has attracted many concerns from
different areas such as location-based service [4], public
health, and traffic. Participatory sensing [2] is the process
whereby individuals and communities use evermore-
capable mobile phones and cloud services to collect and
analyze systematic data for use in discovery. Examples
of existing systems include CarTel [5], BikeNet [6],
DietSense [7], PEIR [8], and so on.

†A preliminary version of this paper has been published in Proceedings

of MobiCASE 2011(poster). This is the full version.

However, privacy problems are the main obstacles
to the success of participatory sensing. Once users are
aware of possible consequences with the reveal of their
sensitive information, they are reluctant to participate the
campaign and use the services. Christin et al. [9] ana-
lyzed the privacy threats and countermeasures in detail.
They primarily addressed on location privacy in compar-
ison with the other sensing modalities. When a user asks
for a certain application, he or she uploads the request
data to servers that are invariably tagged with the loca-
tion (obtained from the embedded GPS in the phone,
WiFi positioning, or using cell tower localization) and
time when the readings are recorded. The mobile sensor
data may reveal the user’s location at a particular time
that is related to the user’s identity information, so this
may invade the user’s privacy information seriously. For
example, recently, two users have sued Google [10] over
location data that Android phones collect citing as one of
the concerns ‘serious risk of privacy invasions, including
stalking’. The lawsuit attempts to prevent Google from
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selling phones with software that can track user location.
However, just a week before, Apple [11] was trapped in
privacy laws for keeping a log of user locations with-
out offering users a way to disable this tracking or delete
the log. Pseudonyms [12] and anonymizing [13,14] tech-
niques have been used to preserve a user’s location privacy.
Nevertheless, if an adversary has prior knowledge of a
user’s movement patterns, it is fairly trivial to deanonymize
the reports.

We consider that a user’s motion patterns may also
reveal his or her privacy. A study by Riley [15] shows
wider trajectory privacy fears: a number of drivers in
the Bay Area are not willing to use FasTrak (the elec-
tronic toll collection system in California) because the
movement of FaskTrak users are tracked. The reveal of
drivers’ trajectories might threaten their privacy. Moreover,
background knowledge attack [16] refers to the situation
wherein an adversary eliminates unlikely candidates and
learns information about his or her victim by using
some prior knowledge about the individual such as
identity linkable or attribute linkable surveyed in [17].
Adversary might use these aforementioned background
knowledge to deduce the user’s real trajectory. The reveal
of the user’s trajectory might threaten the user’s privacy.
Machanavajjhala et al. [18] proposed l-diversity to pre-
vent such attack. In this paper, we consider increasing
the number of possible trajectories from the adversaries’
perspective to further enhance the privacy of individuals.

In this paper, we aim to protect a user’s location and
trajectory privacy in participatory sensing applications that
require precise location information. We use the user’s
partners to construct an anonymous set, called an equiv-
alence class. In order to get high quality of service, he
or she and his or her partners should provide application
server (AS) with precise locations information. The AS
queries the results through these precise locations informa-
tion and returns the result set to the equivalence class. The
user can get a high quality of service by his or her precise
location information without revealing his or her privacy
information. To protect the user’s trajectory privacy, we
construct the mapping relationship between the two equiv-
alence classes. The partners’ trajectories should be similar
to the user’s trajectory so that it cannot be distinguished by
an adversary easily.

In summary, this paper makes the following contribu-
tions:

� We propose a method to protect a user’s location
privacy in participatory sensing applications that
require precise location.

� We propose an algorithm for selecting the user’s
partners. Considering the user’s motion patterns,
in an interval time T , when the user moves to
another position, he or she selects some partners that
have not been selected to form another equivalence
class. Through constructing the mapping relationship
between the two equivalence classes, we can protect
the user’s trajectory privacy.

� We utilize a new metric slope ratio (SR) to evaluate
the partners’ selection algorithm that we proposed
and implement the simulation system with practi-
cal data.

� We present the privacy metric to evaluate the pri-
vacy level that location and trajectory privacy pro-
tection mechanism (LTPPM) can achieve. Then, we
analyze the effectiveness and efficiency of the method
in protecting a user’s privacy in participatory sensing.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 introduces the system
architecture and state the privacy problems. Section 4
describes LTPPM in participatory sensing. Section 5 gives
location and trajectory privacy protection framework and
privacy metric. Then, we analyze the effectiveness and
efficiency of LTPPM against threat model. In Section 6,
we discuss the results and analyze LTPPM. Finally, we
conclude this paper in Section 7.

2. RELATED WORK

User privacy protection in participatory sensing is similar
to safeguard respondents’ privacy in database, which con-
tains continuous-valued fields. Shokri et al. [19] surveyed
the existing location privacy protection mechanisms and
proposed a unified framework for location privacy. Much
of the work is under k-anonymity model. For example,
Gruteser and Gruwald [13] presented spatial and temporal
cloaking, which originated from k-anonymity, to guarantee
user anonymity. Liu et al. [20,21] proposed a flexible
privacy personalization framework to support location
k-anonymity for a wide range of mobile clients with
context-sensitive privacy requirements. k-anonymity is
originally proposed by Sweeney [22,23] in the database
community to protect sensitive information from being
disclosed [24–26]. It provides a form of plausible deni-
ability by ensuring that the user cannot be individually
identified from a group of k users. This can be achieved
by sending a sufficiently large ‘k-anonymous region’ that
encloses k users in space, instead of reporting a single GPS
coordinate. Intuitively, creating a region around multiple
users significantly decreases spatial accuracy. However, the
k-anonymity technique provides coarse-grained location
information, which may not be effective in some partici-
patory sensing applications.

2.1. Coarse-grained locations
privacy protection

Obfuscation methods [13,27] were used to achieve coarse-
gained location privacy. Mokbel et al. [28] presented a
new framework Casper in which mobile and stationary
users can entertain location-based services without reveal-
ing their location information. They deal with cloaked
spatial regions rather than the exact location information.
Tang et al. [29] presented asymmetric group key agree-
ment (ASGKA) protocol to build a safe group and design
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a cycle-like structure to make group members have safe
status. Ghinita et al. [30] proposed a distributed system
PRIVÉ, which organized mobile users into a hierarchical
overlay network and supported decentralized query anony-
mization using the Hilbert-based k-anonymizing spatial
region (HilbASR) algorithm in location-based services.
However, they do not consider the user’s mobility. Beres-
ford and Stajano [31,32] proposed the mix zone concept
in which a trusted proxy removes all samples before it
passes location samples to the AS. The degree of privacy
offered by the mix zone was evaluated for pedestrian traf-
fic under the assumption that an adversary uses empirical
linking. However, the static mix zone concept cannot guar-
antee location privacy in the case that users’ behavioral
models have small variance and in applications with low
user density. The concept of tessellation was first intro-
duced in AnonySense [33,34] to protect user’s privacy
when reporting context information. Tessellation partitions
a geographical area into a number of tiles large enough to
preserve the users’ privacy, and each user’s location is gen-
eralized to a plane in space which covers at least k poten-
tial users. However, it protects the location privacy at the
cost of quality of service. Thus, it is not appropriate for
some participatory sensing applications that require precise
location information.

2.2. Fine-grained locations
privacy protection

Huang et al. [16] proposed a simple modification to
tessellation based on micro-aggregation. They presented an
application, PetrolWatch, which allows users to automati-
cally collect, contribute, and share petrol price information
by using camera phones. However, in their method, ser-
vice providers are assumed to be trustworthy, which may
not be always true in reality, and it also contradicted with
the original intention of tessellation. If a service provider
is trustworthy, it can provide adequate protection on users’
privacy. In this case, no extra protection is needed. In this
paper, we assume the service providers to be untrustworthy.
Kido et al. [35] proposed a way to anonymize a user’s loca-
tion information. The personal user of a location-based ser-
vice generates several false position data (dummies) sent to
the service provider with the true position data of the user.
However, the motions of dummies may be different from
that of the user. It may reveal the user’s privacy informa-
tion. In this paper, we improve this method by selecting
the dummies whose trajectories are closed to the user’s tra-
jectory. Dong et al. [36] proposed a method to preserve
location privacy by anonymizing coarse-grained loca-
tion and retaining fine-grained locations using attribute-
based encryption.

2.3. Trajectory privacy protection

Trajectory privacy-preserving is a new research area that
has been concerned in recent years. Terrovitis et al. [37]
used suppression technology to protect sensitive location
samples in a trajectory database but may cause serious

information loss if suppressed with too much location
samples. Nergiz et al. [38] proposed a randomization-
based reconstruction algorithm for releasing anonymized
trajectory data to solve the information loss problem and
improve the utility of the published data. Abul et al. [39]
proposed exploiting space translation technology to solve
(k; ı)-anonymity problem for moving objects databases. It
anonymizes trajectories in a same time span under uncer-
tainty ı. You et al. [40] proposed two schemes, namely,
random pattern scheme and rotation pattern scheme, to
generate dummies that exhibit long-term user movement
patterns. The random scheme randomly generates dum-
mies with consistent movement pattern, whereas the rota-
tion pattern explores the idea of creating intersection
among moving trajectories. However, in their random pat-
tern scheme, without taking into account factors such as
distance deviation, they simply include more dummies
when the privacy requirements are not satisfied. In this
paper, we based on the distance algorithm to select the
user’s partners whose trajectories will be more closely to
that of the user. It can protect the user’s trajectory privacy
while reducing those trajectories useless more efficient.
More recently, Huo et al. [41] constructed the relation-
ship graph among history trajectories and formed the
k-anonymity set based on greedy method. They also pro-
posed a method called You Can Walk Alone, which extracts
stay points efficiently on people’s trajectories [42], to
improve Never Walk Alone (NWA) [39] by anonymizing
the stay points. They generate k-anonymity zone based on
two algorithms called grid-based approach and clustering-
based approach.

3. SYSTEM ARCHITECTURE

In this section, we introduce the basic structure of par-
ticipatory sensing and state the privacy problems in
this system.

3.1. Overview of participatory sensing

The very basic architecture of a participatory sensing
system, demonstrated by Figure 1, consists of a collection
of mobile nodes (MNs), access points, report server (RS),
and AS.

(1) Mobile nodes
The private MNs that constitute the mobile sensing

infrastructure are devices with sensing, computation,
memory, and wireless communication capabilities.
They are capable of being programmed for manual,
automatic, and context-aware to complete with image,
audio, video, motion, proximity, and location data
capture and broadband communication. These MNs
are mostly carried by humans or attached to other
moving objects such as vehicles.

(2) Report server
The RS functions as aggregator and classifier. It can

aggregate and classify the reports that are collected by
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Figure 1. The basic structure of participatory sensing.

MNs according to some traits, such as category and
location, and then uploads them to the AS.

(3) Application server
The AS is a server that receives reports from RS

and shares the available services for users. The AS
is tasked to provide the services (such as the nearest
restaurant location) with the users’ demands.

3.2. Problem statement

The reveal of a user’s location or trajectory information
would invade the user’s privacy information. For example,
location and trajectory information may reveal individuals
personal information, such as living habits, health condi-
tions, social customs, and work and home addresses. Once
a user’s locations are identified, the adversary would infer
the user’s trajectory information according to the exposed
locations. Similarly, the reveal of a user’s trajectory would
also result in the disclosure of the user’s locations. There
is a mutual influence and mutual restraint between location
and trajectory protection. The purpose of them is to protect
the user’s privacy from being invaded. Therefore, we will
discuss the content of the user’s LTPPM, respectively.

4. THE PROPOSED SCHEME

In this section, we analyze how the LTPPM functions in the
contradictory between location privacy and high quality of
service and trajectory privacy protection.

4.1. Location privacy with high quality
of service

In this section, we present a method to solve the con-
tradictory between the location privacy and high quality

of service. Given that no trust server is available, mean-
while, wireless networks are only responsible for com-
munication and will not reveal a user’s location privacy.
A user who wants to obtain a high quality of service
(e.g., he or she wants to know the precise location of the
nearest restaurant) should send his or her precise location
information with his or her mobile device. However, the
user’s privacy information may be invaded by the reveal
of the precise location information. In [13], they proposed
a mechanism called spatial and temporal cloaking to con-
ceal a user. To achieve a certain privacy level, the spatial
or temporal accuracy of location information is reduced.
Then, the accuracy of service will also be reduced. In this
paper, to request a high quality of service, we propose a
method in which the user’s precise location information
(single GPS coordinate) is sent to AS while ensuring that
the user privacy will not be invaded.

A user forms an equivalence class by selecting a certain
number of partners. Considering the user’s mobility, in
order to protect his or her trajectory privacy, the process of
partners selection will be discussed in Section 4.2. To illus-
trate conveniently, we assume there are six partners in the
equivalence class, which is shown by Figure 2. We argue
that the partners will not reveal the user’s location informa-
tion to AS. The user sends relevant information including
his or her identity signature and requirement to his or
her partners. They verify the user’s legality and obtain
each coordinate through GPS, which is listed as follows:
.L1; L2; : : : ; L6/, where Li D .xi ; yi /; i D 1; 2; : : : ; 6.

Step 1. Service Request
In order to obtain a high quality of service and

protect privacy information at the same time, the
user and his or her partners in the same equivalence
class send their locations and service requests without

158 Wirel. Commun. Mob. Comput. 2015; 15:155–169 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



S. Gao et al. Location and trajectory privacy protection

Figure 2. The process of service.

any identity information to AS. For example, they
query the nearest restaurant location to each of
their current locations, which are described as
.L;Request/; .L1; Request1/; : : : ;.L6; Request6/.
Step 2. Service Query

In participatory sensing applications, the AS
exploits the information shared by the mobile
sensing devices to provide services. As a result
of the precise locations information, the AS can
get the query result reports, which are described
as .L;Result/; .L1; Result1/; : : : ; .L6; Result6/,
where Resulti refers to the contents of the service
related to Li , and then return them to the equiva-
lence class.
Step 3. Service Distribution

All the members in the equivalence class receive
the result reports. The others cannot obtain the nearest
restaurant location to the real user, and only the user
can pick out the result he or she desires with his or her
precise location information.

As showed by Figure 2, there are seven participators
in the equivalence class. Even the adversary obtains all
the location coordinates, the probability that he or she can
identify the real user is one seventh. When the number of
participators in the equivalence class is huge, the possibil-
ity that he can distinguish is very low. It will be analyzed
in Section 5 in detail.

4.2. Partners selection

Each participant is equipped with two wireless network
interface cards. One is dedicated to the communication
with the AS through a base station or wireless modem.
The other one is dedicated to the peer-to-peer communica-
tion among the peers through a wireless local area network
(e.g., Bluetooth or IEEE 802.11). Also, each participant is
equipped with a positioning device (e.g., GPS), which can
determine its current location [43].

In order to produce trajectories those are similar to that
of the user. In this paper, we adopt distance-based method

to select partners. The server might be untrustworthy.
Thus, all the partners in the same equivalence class will
not expose the user’s relevant information to the AS.
The partners ensure the legality of the source message by
verifying the user’s signature. Algorithm 1 depicts the pro-
cess of partners selection. The inputs of the algorithm are
interval time T , geographic informationMap, and a user’s
location, and the output is an equivalence class formed
by the user’s partners. The specific selection process is
described as follows:

(1) The user maintains a table including partners’ iden-
tities and locations information. In an interval time
T , the user computes the distances between him or
her and the surrounding partners.

(2) The user sends his or her signature and the request
information to the surrounding partners. Then, they
ensure the request information that is derived from
the user by verifying the user’s signature.

(3) Select k partners who are close to the user. If a
participator has been selected by the user, it cannot
be selected again in the interval time T .

(4) Construct the mapping relationship on the basis of
the corresponding distance, we can obtain several
trajectories that are similar to that of the user. The
process will be displayed in Section 4.3.

4.3. Trajectory privacy protection

In this section, we focus on the user’s trajectory privacy
protection. The user’s privacy would be invaded with the
reveal of his or her trajectory. In order to solve the problem,
Kido et al. [35] presented two algorithms named moving in
a neighborhood (MN) and moving in a limited neighbor-
hood (MLN). The next location of the dummy is decided
in a neighborhood of the current location of the dummy.
However, the dummies’ trajectories may be different from
the user’s trajectory. It might result in identification of the
user’s trajectory easily among them.

In this paper, we construct two equivalence classes in an
interval time T on the basis of the user’s partners. Take note
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Figure 3. The trajectories of the user and his or her partners.

that the uploaded reports only include each location and
request, thus adversary can hardly identify the real user by
comparing the two equivalence classes for different values.
We employ the assumption [39] that the user’s trajectory is
linear in the interval time T . According to the correspond-
ing distance away from the user in the two equivalence
classes, we map the partners’ corresponding locations to
produce k similar trajectories to that of the user. The effec-
tiveness will be discussed in Section 5.3. To demonstrate
more clearly, we take an example to reconstruct the pro-
cess. As illustrated by Figure 3, a user stays at point a.
Before he or she requests a service (e.g., find the near-
est restaurant), he or she selects k.k D 3/ partners as an
equivalence class to cloak herself. Then, all the partici-
pators in the equivalence class send their locations to the
AS. When the user moves to point b, he or she follows the

same process. Note that the partners he or she selected may
be different. The partners’ trajectories can be constructed
upon the distance away from the user, such as the near-
est partner in an equivalence class mapping to the nearest
one in another equivalence class. Thus, the user’s trajec-
tory can be hidden by constructing the partners’ trajectories
between the two equivalence classes. With the distances
between the user and his or her partners, the partners’ tra-
jectories are similar to that of the user. We will utilize a new
metric SR to evaluate the similarity between the user’s tra-
jectory and that of his or her partners. It will be discussed
in Section 5.

5. EVALUATION AND EXPERIMENT

In this section, we discuss location and trajectory privacy
protection framework and threat model first, and then, we
present a new metric, named SR, to evaluate the method
we proposed in Section 4 with the practical data. Finally,
we formalize the privacy metric and measure the privacy
level that LTPPM can achieve against the threat model.
Then, we analyze the results to evaluate the effectiveness
and efficiency of LTPPM.

5.1. Framework

We present a framework based on [44,45] to evaluate the
LTPPM. In this paper, we define the location and trajec-
tory privacy protection framework as a tuple as follows
hAc.Lo; T r/, LTPPM , Ob.Lo; T r/, Adv, Metrici,
where Ac.Lo; T r/ is the actual location and trajectory
set of the user and Ob.Lo; T r/ is the observed location
and trajectory set of the members in equivalence class.
LTPPM stands for location and trajectory privacy protec-
tion mechanism presented in this paper. Adv is an entity
who implements some typical attacks against LTPPM to
get the actual user’s location and trajectory. The effective-
ness of breaking the user’s location and trajectory privacy
is measured by Metric.

(1) Ac.Lo; T r/ and Ob.Lo; T r/
The user takes k partners to construct an equiv-

alence class. We sort the partners according to
the distances from the user, which is described
as .u; u1; u2; : : : ; uk/. When he or she moves
to another location v, he or she follows the
same operation to form another equivalence class
including m partners, which are described as
.v; v1; v2; : : : ; vm/. At present, we get two equiv-
alence classes in the interval time T . The map-
ping relationship is constructed on the basis of
the corresponding distances in the two equivalence
classes. We can construct several trajectories between
the two equivalence classes, which are showed by
h.u; v/; .u1; v1/; : : : ; .uminfk;mg; vminfk;mg/i. Thus,
we can get minfk;mg C 1 trajectories presented by
Ob.Lo; T r/. But only Ac.Lo; T r/ is the user’s real
trajectory among them.
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(2) LTPPM
To ensure that the user’s location and trajec-

tory privacy would not be invaded, we have dis-
cussed the LTPPM in Section 4.1 and Section 4.3,
respectively. Given the user’s location Lo.u/ and
trajectory T r.u/, we obscure them to Lo D

hLo.u/; Lo.u1/; : : : ; Lo.uk/i and T r D hT r.u/,
T r.u1/; : : : ; T r.um/i using the aforementioned
LTPPM.

Neither the disclosure of location nor trajectory
would violate a user’s privacy information. For
example, if the user’s trajectory is exposed, the adver-
sary might deduce the user’s location by combining
his or her knowledge about the user and vice versa.
Therefore, both the user’s location and trajectory
should be protected together. The aim of the adver-
sary is to infer the user’s privacy with the probability
function depicted by Equation (1). In other words,
LTPPM is to make the probability low so that the
user’s privacy information can be highly protected.

P .u/D PrfAc.Lo.u/[ T r.u//jOb.Lo; T r/g

D PrfAc.Lo.u//jOb.Lo/g

CP fAc.T r.u//jOb.T r/g

� PrfAc.Lo.u/\ T r.u//jOb.Lo; T r/g
(1)

In the following, we will present the privacy metric
to evaluate the correctness of the adversary to get the
real user and the effectiveness of LTPPM in privacy
protection.

(3) Privacy metric
We consider all the slopes are exist and present a

new metric, named SR, to measure similarity among
trajectories and define their indiscernibility relation-
ship. Then, we formalize the correctness that adver-
sary can identify a real user and define the location
and trajectory privacy level.

Defination 1 (Slope Ratio). In an interval time T , we
assume that the user’s trajectory is linear. We get the user’s
source location coordinate A.x1; y1/ and the destination
coordinate B.x2; y2/. The user’s trajectory slope can be
calculated by k1 D .y2�y1/=.x2�x1/. Similarly, we can
get the partners’ trajectories slopes k2; k3; : : : ; km. SR is
defined as ˛.˛i D ki=k1; i D 2; 3; : : : ; m/, where when ˛
is within the threshold we define, the two trajectories are
considered to be similar.

Defination 2 (Indiscernibility Relationship). Let � be a
threshold we define; when the ratio ˛ of partners’ trajec-
tories slope ki .i D 2; 3; : : :/ to the user’s trajectory slope
k1 is within Œ0;C��, we consider the user’s trajectory and
his or her partners’ trajectories cannot be distinguished.
The closer the SR ˛ is to one, the more difficult it is for an
adversary to distinguish the user’s trajectory from his or
her partners’ trajectories.

Location and trajectory privacy of a user is defined as the
error of the adversary in estimating the actual location and
trajectory of the user. The correctness of the adversary is
quantified using the expected difference between the real
outcome .Lo.u/; T r.u// and the estimator on the basis
of the probability function P .u/. In formalization, the
correctness of the adversary to get the real user can be
calculated by Equation (2).

CorrectAdv D

8̂<
:̂
P .u/.˛i � ˇi / if ˛i > 1

P .u/..1� ˛i / � ˇi / if 0� ˛i � 1

1 if ˛i < 0

where ˇi D
Lo.u/�Lo.ui /

k Lo.u/�Lo.ui / k
(2)

We define the difference as the relationship between ˛i
and ˇi , where ˛i means the similarity between the user’s
trajectory and his or her partners’ trajectories set T r and ˇi
represents the distances between the user’s location and the
observed locations set Lo, which are converted into Œ0; 1�
interval. As an example, when the distances are non-zero,
that is ˇi ¤ 0, the difference is defined to be equal to 0
if and only if ˛i D 1. Specially, if ˛i < 0, it means that
the trajectories of the user’s partners go in different direc-
tions. Therefore, it is easier for an adversary to deduce the
user’s trajectory and location in an interval time T . Thus,
we define the correctness of the adversary is 1 and remove
the trajectory.

Theorem 1. When the distances are constant, it can be
seen that the closer ˛i is to one, the lower of the correct-
ness that adversary observes the real user is. Otherwise,
if the ˛i is far away from one, it is easy for the adversary
to distinguish the user’s trajectory and location from the
observed sets.

Proof . See Appendix A. �

We quantify the privacy of a user as the error of the
adversary in estimating the actual location and trajectory
of the user. Hence, the privacy metric can be calculated as
1 � CorrectAdv . The higher CorrectAdv is, the lower
the privacy is. Therefore, adversary can identify the user’s
trajectory easily if the user’s trajectory is different from
that of his or her partners greatly. To solve the problems,
the user’s partners’ locations should not be far away from
the user, and SR should be close to one. We can see that the
closer the partners’ location and trajectory is to that of the
user, the lower CorrectAdv is. Therefore, the privacy of
the target will be highly protected.

5.2. Threat model

The goal of the adversary is to locate the user’s location or
trajectory in an interval time T through the observed loca-
tions and trajectories. More formally, we consider that the
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adversary possesses certain background knowledge about
the user such as the location and trajectory information dis-
tribution, the characteristics of services, and also privacy-
preserving mechanism. The most general one is to recover
all the trajectories of all participants, that is, to compute
the probability P fAc.Lo; T r/jLTPPM;Ob.Lo; T r/g.
Besides, we assume that there is no special information
to reveal the user’s privacy information from the observed
information. It means that the user and his or her partners
would be distinguished at the same probability.

Theorem 2. Given k and m partners in the two equiv-
alence classes separately, minf.k C 1/; .m C 1/g tra-
jectories have been constructed. The average location
and trajectory re-identification probability are bounded by
Equations (3) and (4).

P1 D Pr

(
uD Ac.Lo.u//j

\
i

Ob.Lo.ui //

)
D

1

kC 1

P2 D Pr

(
uD Ac.Lo.v//j

\
i

Ob.Lo.vi //

)
D

1

mC 1

(3)
and

P3 D Pr

(
uD Ac.T r.u//j

\
i

Ob.Ac.T r.ui ///

)

D
1

minf.kC 1/; .mC 1/g

(4)

Proof . In this attack model, we assume that the adversary
can access all the public locations and trajectories. Adver-
saries do know the distribution of the places on the map, but
they do not know which is the real user when they request
for services. Given two published equivalence classes,
there are k and m partners. minfkC 1;mC 1g trajectories
are constructed. The re-identification probability depends
on the number of partners in the two equivalence classes
are bounded by Equations (3) and (4). �

Take a simple example; suppose there are two partners in
each equivalence class. Three trajectories are constructed,
and only one of them is the real user’s trajectory. Because
of the similarity among trajectories, the identification prob-
abilities of the user’s real location and trajectory are
1=3, respectively. When there are lots of partners in each
equivalence class, which means that k and m are very
large, the probabilities that an adversary can identify the
user’s location and trajectory are very low. It means that
our method can protect the user’s location and trajectory
privacy effectively.

The most general one is to recover the user’s location
and trajectory together in the interval time T . It can be
computed at the probability depicted by Equation (5).

P4 D PrfuD Ac.Lo.u/; T r.u//jOb.Lo; T r/g

D P1 �P2 �P3
(5)

As indicated in Equation (1), the function presents the
probability that the adversary derives the user’s location
or trajectory. The correctness of invasion of the user’s
privacy under the probability P .u/ with various differ-
ences is depicted by Equation (2). We can see that the
higher Equation (1) is, the higher the success rate of the
adversary is.

5.3. System simulation

In this section, we evaluate the effectiveness and efficiency
of LTPPM in protecting a user’s privacy while his or her
location or trajectory exposes in an interval time T . We
measure the user’s location and trajectory privacy with
the privacy metric presented above and demonstrate the
robustness of LTPPM against threat model.

5.3.1. Simulation setting.

The dataset we acquired from GeoLife (Microsoft
Research Asia) [46,47] contains more than 8000 trajec-
tories by 165 users in a period of over 2 years (from
April 2007 to August 2009). According to their dataset
specification, a sequence of time-stamped points con-
tains the information of latitude, longitude, height, speed,
heading direction, and so on. These data were recorded
by different GPS loggers or GPS phones, and have a
variety of sampling rates. Of the trajectories, 95% are
logged in a dense representation, for example, every
2–5 s or every 5–10 m per point, while a few of them do not
have such a high density being constrained by the devices.

We captured the map information from Geolife.
Figure 4 shows the location information of Beijing [46,47].
We randomly chosen part of the data and imported them
into a two-dimensional relative coordinate system, as
Figure 5 displays.

Figure 4. Data distribution in Beijing [46,47].
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5.3.2. Simulation results.

The user’s location in the coordinate system is showed
by a blue circle in Figure 6. In order to protect the user’s
location privacy information, we assume that he or she
forms an equivalence class with 20 partners. When he or
she moves to another location, he or she forms another
equivalence class with the same number of partners. On the
basis of Algorithm 1, we select the partners and construct
the mapping relationship between the two equivalence
classes. The process is depicted by Figure 7.

The user’s trajectory can also be protected among the
mapping relationship. However, if the partners’ trajectories
are different from the user’s trajectory, it might be easy to
identify the real user. Therefore, we utilize a new metric SR
defined by Definition 1 to evaluate the similarity between
the user’s trajectory and that of his or her partners.
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Figure 5. Part of data in two-dimensional relative coordinate
system.
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The user and her partner location information distribution

Figure 6. The user and his or her partner location information
distribution.

We select a threshold � D 1 and analyze the result. The
similarity relationship between the user’s trajectory and
that of his or her partners is depicted in Figure 8. We can
obverse that there are lots of partners’ trajectories whose
SRs are fluctuating around 1. It proves that the algorithm
can produce lots of trajectories that are similar to the
user’s trajectory under the threshold that is set by the user.
We change the threshold � (� D 2; 3; : : : ; 6). Figure 9
shows the number of partners that satisfy the condition
defined in Definition 2 with the six different thresholds.

As we can see, the higher the threshold � is, the more
partners we can choose. Through defining the threshold
value � , we can decide how many partners we should
select to protect the user’s location and trajectory privacy
in participatory sensing.
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The process of partner selection

Figure 7. The process of partner selection.
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Figure 8. The similarity relationship between the user’s trajec-
tory and that of his or her partners.
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Figure 9. The number of partners with different thresholds.

5.3.3. Effectiveness.

In this section, we evaluate the effectiveness of LTPPM
against the threat model defined in Section 5.2. Figure 10
shows the conditions of different number of partners
(num D 10; 20; 25). The left figures depict the correct-
ness that the adversary could obtain the user’s real location
or trajectory information, and the right figures show the
privacy level that LTPPM can achieve. It presents the effec-
tiveness of LTPPM in protecting the user’s location and
trajectory privacy.

Comparing the results of different numbers of the user’s
partners, we conclude that the correctness of the adver-
sary in identifying the user’s real location and trajectory
decreases with the number of the user’s partners increases.
That is because the increase of the user’s partners would
cause the adversary to have more difficulty in identify-
ing the real user. Thus, the user’s location and trajectory
privacy can be enhanced.

To be more specific, the x-axis shows the SR between
the user’s trajectory and that of his or her partners. In the
left figures, the y-axis stands for correctness of adversary.
We can see that there are lots of data around SR D 1. The
closer the SR is to one, the correctness of adversary to iden-
tify the user’s real location and trajectory decreases. The
closer the SR is to one means that the user’s trajectory is
more similar to that of his or her partners, which is proved
by Theorem 1. This may make it difficult for the adversary
to distinguish the real user’s location and trajectory from
a set of observed locations and trajectories. Therefore, the
correctness of the adversary is low where the SR is close to
one. In the right figures, the y-axis represents the location
and trajectory privacy, which is defined in Section 5.1. In
contrast to the left, the closer the SR is to one, the higher
location and trajectory privacy is. Overall, we can see that
when the number of the user’s partners is enough, the prob-
ability of location and trajectory privacy is more than 0.5.
Hence, it can be concluded that the LTPPM is effective on
privacy protection.

5.3.4. Efficiency.

To evaluate the cost of our approach, we mainly
concern on anonymous communication time and storage
overhead in quantitative analysis. In our LTPPM, anony-
mous communication time and storage overhead increase
are generated as a side effect to enhance location and tra-
jectory privacy. Because the processing cost for each equiv-
alence class is low, we do not consider process cost in
this paper.

As we mentioned in Section 4.1, in the service
request phase, to obtain a high quality of service, each par-
ticipator in the equivalence class sends their location
data f.x; y/; .x1; y1/; : : : ; .xk ; yk/g to AS, where L D
.x; y/ is the real user’s location and Li D .xi ; yi /,
i D 1; 2; : : : ; k, are the user’s partners’ locations. The cost
of anonymous communication time is O.k/. Therefore,
the anonymous communication time increases proportion-
ally with the number of partners in the equivalence class
increases. Similarly, in the service query and distribution
phase, because Resulti corresponds to Li , the cost of
anonymous communication time is O.k/.

To protect the user’s trajectory privacy, we construct
k C 1 similar trajectories based on the two equivalence
classes in the interval time T in Section 4.3. To confuse
the adversary, we need to store the partners’ trajectories.
The overhead of storage is O.k/, which is proportional to
the number of trajectories.

6. DISCUSSIONS

In this paper, a user’s location and trajectory privacy can be
protected. We discuss and analyze LTPPM as follows.

6.1. Location privacy protection

We expect that the location privacy of a user at the micro
level is inversely proportional to locate the user at a given
interval time T . That is, the more accurate the adversary
can locate a user, the poorer the location privacy of the
user will be. Most of the existing work protects a user’s
location privacy by the accuracy reduction technique, such
as transforms the accurate location of the user into a
cloak spatial area. Although location privacy is enhanced,
the quality of service may reduce. It is not applicable in
some participatory sensing applications that require precise
location information for high quality of services.

To overcome this contradiction between privacy and
quality of service in this paper, a user selects several
partners to construct an equivalence class. All the partners
in the equivalence class provide their accurate locations
together with the user to confuse adversary for a high pri-
vacy level. Meanwhile, the user can obtain a high quality
of service. Note that they would not send any other infor-
mation with identity-related information. Even though the
user changes the partner groups very frequently, the adver-
sary cannot identify the real user because all coordinates
of the user and his or her partner groups are different
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Figure 10. Correctness of adversary and effectiveness of LTPPM.

each time. Although AS can obtain the user and his or
her partners’ accurate locations, they cannot identify the
user’s accurate location by comparing different partner
groups. Compared with the accuracy reduction technique,
our method could provide a more accurate location for
quality of service while the privacy level will not decrease.

6.2. Trajectory privacy protection

Once a user’s trajectory is identified, it might threaten his
or her location privacy. Therefore, it is important to protect
a user’s motion trajectory in participatory sensing.

To prevent an adversary from identifying the user’s
trajectory, we construct several partners’ trajectories that
are similar to that of the user in an interval time T . The con-
struct process is depicted in Section 4.3 in detail. The effec-
tiveness is evaluated in Section 5 through theoretical proof
and simulation. Although the adversary may observe all

possible trajectories, he or she can hardly make a distinc-
tion between the user’s real trajectory and his or her part-
ners’ trajectories. Through the method, the user’s trajectory
can be hidden among the partners’ trajectories.

7. CONCLUSIONS

In this paper, we propose a method to protect a user’s
location privacy while providing high quality of service.
Through selecting a certain number of the user’s partners to
construct an equivalence class, we can hide the user’s loca-
tion. Considering that the user’s motion trajectory might
also reveal the user’s privacy, we propose an algorithm to
construct several trajectories that are close to the user’s tra-
jectory. It can prevent an adversary from identifying the
user’s real trajectory from his or her partners’ trajectories
effectively. Finally, we utilize a new metric, named SR,
to evaluate the similarity between the user’s trajectory and
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that of his or her partners. Then, we formalize the location
and trajectory privacy protection framework and analyze
the threat model. Aiming at the threat model, we measure
the privacy level that the LTPPM can achieve and ana-
lyze the effectiveness and efficiency of LTPPM through the
results.

Note that we argue the partners will not reveal the user’s
location. Once the partners collude with AS, they may
reveal the user’s information to AS. Thus, the user’s loca-
tion and trajectory privacy will be invaded. With the pro-
posed LTPPM having much space to extend, in the future,
we will consider to prevent such collusion attack; besides,
we plan to address anonymity of static user’s continuous
query services and extend our proposal to continuous
location and trajectory privacy protection.

APPENDIX A

The proving process can be depicted as following. From

Figure A.1,
�!
T1 D .xB � xA; yB � yA/ and

�!
T2 D .xB0 �

xA0 ; yB0 � yA0/ represent two vector trajectories. Suppose
the slopes of the two trajectories are exist and equal to k1
and k2, respectively. The angle of the two trajectories can
be computed as follows:

cos �D

�!
T1 �
�!
T2

j
�!
T1jj
�!
T2j

D
.xB � xA/ � .xB0 � xA0 /C.yB � yA/�.yB0 � yA0 /p
.xB�xA/2C.yB�yA/2 �

p
.yB0�yA0 /2C.xB0�xA0 /2

D
1C k1 � k2q

1C k21 �
q
1C k22

where � 2 Œ0; ��. We construct trajectory function

f .x/D
1C k1xq

1C k21 �
p
1C x2

where k1 represents the slope of user’s trajectory.

B

'A

'B

2T

X

Y

1T
A

Figure A.1. Diagram.

Now, we discuss the slope trajectory relation-
ship between partners and the user. Because f .x/ is
continuously differentiable, we can compute the derivative
f 0.x/ with respect to x:

f 0.x/D
k1 � x�

1C k21
�1=2
�
�
1C x2

�3=2
when x < k1, then f 0.x/ > 0, f .x/ %; otherwise,
x > k1, then f 0.x/ < 0, f .x/&; f .x/ gets the maximum
value if and only if x D k1.

As we define ˛ D x=k1.x D k2; k3; : : : ; km/. When
x! k1, then ˛! 1 and f .x/! maxff .x/g. Therefore,
� ! 0, which means that the two trajectories keep indis-
cernibility relationship; it is hard to identify the real user.
Otherwise, if the ˛i is far away from one, it is easy for the
adversary to distinguish the user from the observed sets.
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