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Abstract—The Metaverse is established by twining a practical
world in a virtual form, where users could become creators
of learning-based user-generated content (UGC). However, the
digital assets are not owned by the creators, which deviates from
the decentralized Metaverse based on blockchain in Web 3.0. The
contribution incentive design for UGC still faces the challenges
of ownership verification and privacy protection. To this end,
we propose minting the learning model into the non-fungible
token (NFT) with federated learning (FL) assistance (referred
to as FL-NFT), such that users as stakeholders can control the
ownership and share the economic value of UGC. Specifically,
the users are encouraged to establish a decentralized autonomous
organization (DAO) to aggregate local models and mint FL-NFT.
We formulate an auction interaction of FL-NFT as imperfect
information Stackelberg game (IISG) to optimize the bidding
strategies to realize individual rationality. Finally, we conduct
simulations to show the effectiveness of the proposed scheme.

Index Terms—Metaverse, blockchain, federated learning, NFT,
UGC, incentive mechanism, Stackelberg game

I. INTRODUCTION

The rapid development of emerging communication and

multimedia, such as beyond 5G/6G, augmented reality (AR),

virtual reality (VR) and mixed reality (MR), makes it possible

for users to physically immerse in Metaverse [1]. In 1992, the

word ”Metaverse” first appeared in the science fiction Snow
Crash of Neal Stephenson [2]. In 2021, Facebook was even

rebranded as ”Meta”, which brought the Metaverse back to

cutting-edge discussions. Metaverse users (MUs) immerse in

the virtual world built by Metaverse service providers (MSPs).

Many technology giants, including Microsoft, Apple, Google,

Tencent, Baidu, etc., have undertaken Metaverse services.

Although increasingly Metaverse applications are emerging,

it is still far from the ultimate version with the feature of

immersion, embodiment, universality, and interoperability [3].

In Web 3.0, a decentralized virtual world will be constructed

based on blockchain infrastructure. In order to support im-

*The corresponding authors are Zehui Xiong and Sheng Gao.

mersive experiences, massive learning-based UGCs are cre-

ated. However, the creators cannot own digital assets due to

monopolists and dictators. Autonomous ecosystems based on

blockchain bring a feasible solution to address this critical

issue. As a distributed ledger technology, blockchain can

record the ownership of UGC in a decentralized manner. MUs,

as essential stakeholders, can benefit from their contribution

to the UGC. Meanwhile, the contribution incentive design for

UGC is exposed to the risk of privacy disclosure.
Federated learning (FL) [4] is a privacy-preserving collab-

orative machine learning paradigm [5], which can be used to

organize MUs to facilitate the creation of UGC in the form of

an FL global model. In the FL training task, obtaining a high-

quality model requires all participants to perform intensive

computation through collective efforts. For example, MUs

have to consume CPU, storage resources to train local models.

A few incentive mechanisms for FL have been proposed,

but they are not directly applicable in the Metaverse due to

the immersion experience. In this paper, we are interested in

an incentive mechanism to encourage MUs to participate in

a decentralized autonomous organization (i.e., MU-DAO) to

mint FL-NFT. The critical challenges are faced as follows:
C1. How to manage and control the trading of FL-NFT with

the consensus of multiple stakeholders ?
C2. How to trade off the cost and benefit of MUs in the

process of FL-NFT minting?
To mitigate the above challenges, we design an incentive

mechanism to encourage MUs to establish a decentralized

autonomous organization MU-DAO, which tokenizes the own-

ership of learning-based UGC by minting models to NFT. The

novel contributions of this paper are listed as follows:

• To the best of our knowledge, we are the first to propose

the idea of minting the learning models into NFT with FL

assistance (i.e., FL-NFT). In order to mitigate the issue of

monopolists and dictators, MUs are encouraged to estab-

lish an MU-DAO to train the FL models collaboratively.
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• We formulate an auction interaction of FL-NFT as imper-

fect information Stackelberg game (IISG) to optimize the

strategies of MUs and MSPs, which realizes utility max-

imization and individual rationality. We adopt backward

induction to derive the equilibrium solution.

• We conduct extensive numerical simulations based on

real image datasets to validate the efficacy and efficiency

of the proposed auction mechanism. Compared with

benchmarks, our scheme can increase the quality of FL-

NFT and achieve individual rationality.

The remainder of this paper is organized as follows. In

Section II, we review related works. In Section III, the FL-NFT

auction model and FL cost-benefit framework are presented.

In Section IV, the strategies optimization of MUs and MSPs

based on the IISG is given. We conduct simulations in Section

V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Recently, some researchers have focused on the study of

incentive mechanisms designed for Metaverse. Xu et al. [6]

designed a deep reinforcement learning (DRL)-based incentive

mechanism for VR service in the wireless edge computation

empowered Metaverse, in which a double Dutch auction

mechanism is adopted to determine bidding strategies and allo-

cation schemes of VR service. Jiang et al. [7] adopted Coded

Distributed Computing (CDC) scheme to support rendering

computation in Metaverse services, where coalition game and

Stackelberg game were adopted to choose reliable workers to

participate in the rendering tasks of Metaverse service. Sun et

al. [8] investigated dynamic digital twin (DT) and two-stage

Stackelberg game to encourage users to participate in aerial-

assisted Internet of Vehicles (IoV). Lin et al. [9] proposed an

incentive-based congestion control scheme for Digital Twin

Edge Networks (DTENs), in which the Lyapunov optimization

theory [10] was adopted to decompose the long-term control

decision into a series of online associate decisions.

Blockchain is an essential infrastructure for the decentral-

ized Metaverse ecosystem [3], that ensures security manage-

ment and record for UGC with properties of decentralization,

tamper-proof, trustworthiness, etc. A review [11] discussed the

Metaverse based on blockchain from the technical point of

view and puts forward some promising directions to innovate

the usage of blockchain in Metaverse applications. Yang

et al. [12] discussed how blockchain empowered artificial

intelligence (AI) technologies in the three-dimensional (3D)

virtual worlds. Fan et al. [13] implemented a blockchain-based

prototype to simulate a decentralized, fair and transparent

UGC trading platform, in which a dynamic game is adopted

to model interactions among the mobile devices. Suhail et al.

[14] proposed the usage of blockchain to target key challenges

of untrustworthy data transmission and fault diagnosis in

DT systems. However, there are few study on the incentive

mechanisms in the blockchain-driven Metaverse.

FL as a collaborative distributed learning paradigm allows

clients to share information by gradient parameters of models

instead of raw data [3], which efficiently assists in executing

MU-DAO FL local model training

ownership

Bidders

1) FL model training

2) FL-NFT minting

3) FL-NFT 
auction

timestamp

MU-DAO

Fig. 1. The proposed system model based on blockchain. 1) FL model training
process by Stackelberg game. 2) FL-NFT minting process based on blockchain
3) MSPs bid for FL-NFT by auction mechanism.

intensive computation on many edge devices of MUs. Chen

et al. [15] designed a collaborating mobile edge computing

paradigm with FL for AR applications. In terms of FL model

utility, Zhang et al. [16] focused on trading off the privacy

cost and utility loss to maintain a provable privacy guarantee,

and the results showed that there is no free lunch for the

privacy-utility trade-off. To address the risk of free-riding

and unfairness, FedIPR [17] verified the ownership of FL

models by watermarks embedded into the model. Moreover,

the existing works fail to address how to trade off the cost and

utility of FL model training and determine the economic value

of the FL models. Therefore, FL model market equilibria and

incentive mechanism need to be investigated in-depth.

III. SYSTEM MODEL

In the Metaverse service, an incredible amount of digital

content created by MUs, i.e., UGC. In order to protect the

ownership of creators, UGC can be minted to NFT via

blockchain for collecting, trading, and accessing.

A. FL-NFT auction model based on blockchain

We consider an FL-NFT auction model based on

blockchain with N Metaverse users (MUs) denoted by U =
{U1, U2, . . . , UN} and M Metaverse service providers (MSPs)

denoted by P = {P1, P2, . . . , PM}. For any MU Ui with

dataset Di = {(x1, y1), (x2, y2), . . . , (xd, yd)}, the loss func-

tion L(·) [18] can quantify the difference between the predic-

tive value f(mi, xl) and labeled value yl. For MU-DAO, the

target of FL tasks is to minimize the loss function L(·) as

T (mt
i) = arg min

mt−1
i

{
1

d

d∑
l=1

L
(
f
(
mt−1

i , xl

)
, yl

)}
, (1)

mt
i is the parameters of the local model trained by Ui in the

t-th iteration , d is the size of local dataset.

The proposed system model based on blockchain consists

of three phases: FL model training, FL-NFT minting, and FL-

NFT auction, as shown in Fig. 1.

1) FL model training: MUs are organized in a decentralized

autonomous organization (i.e., MU-DAO) to participate in the
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FL model training collaboratively after MUs decide on their

training strategies by the Stackelberg game. MU-DAO initial-

izes the FL model parameters according to the chosen machine

learning model, broadcasts them to MUs which begins local

model training. The MU-DAO aggregates local models of MUs

by smart contract. The local models are updated based on the

mini-batch stochastic gradient descent algorithm [19].

2) FL-NFT minting: The smart contract serves as the minter,

which is responsible for collecting the model parameters m∗,
the minting timestamp τm∗ , and the public key of MU-DAO,

etc. Then, the minter packages this information to a file named

fl-nft.js, which is recorded in the blockchain to ensure that FL-

NFT is genuinely decentralized. The ownership of FL-NFT

belongs to the whole MU-DAO and allows FL-NFTs to be

sold by the consensus within MU-DAO.

3) FL-NFT auction: MSPs offer bids to the blockchain-

based auction platform, where the winner determination is

implemented in the auction smart contract to realize auto-

matic auction execution. Due to heterogeneity between MUs

in computing, storage, communication resources, and data

quality, there are free-rider and unfairness issues. Therefore,

it is necessary to trade off the cost and benefit to encourage

more MUs to participate in MU-DAO fairly.

B. FL Cost-benefit Framework of the Metaverse Users

In this paper, we mainly consider computation and privacy

cost. The cost function of Ui to perform FL training task can

be expressed as

Ci = Cc
i ki + Cp

i εi, ∀ki ∈ Z
+, ∀εi ∈ R

+, (2)

where Cc
i and Cp

i denote the unit cost factors of computation

resource consumption and privacy disclosure, respectively. ki
and εi are the iterations of local model and the differential

privacy budget [20], respectively.

• Computation cost factor Cc
i : We denote the CPU perfor-

mance of MUs for model training by fi (i.e., CPU clock

frequency). Moreover, the average memory occupation

ratio and memory occupation ratio are denoted by ξi and

θi, respectively. Then, the memory occupation for local

model training is ξiθi. Based on the secondary energy

consumption model of CPU [21], the unit computation

cost of model iteration can be defined as

Cc
i = αζzisif

2
i + (1− α) ξiθi, (3)

where α is the computation cost adjustment factor, ζ is

the effective capacitance [22], zi is the CPU cycle when

handling one batch of data, and si is the batch size for

each iteration of the local model.

• Privacy cost factor Cp
i : In order to minimize the risk

of privacy disclosure when sharing the local model in

MU-DAO, the privacy cost of intermediate parameters is

considered. Inspired by [23], we adopt gradient-norm to

measure the privacy preference. Thus, the per unit cost

of privacy disclosure Cp
i can be defined as

Cp
i = β ln

(
1 +

∥∥�g̃
(
mt

i, bi
)∥∥) , (4)

where β is the privacy cost adjustment factor, the smaller

the privacy budget εi is, the greater the noise disturbance

and the lower the model quality could be.

In FL-NFT minting process, MUs adjust training strategies,

including local iterations and privacy budget, to maximize

their benefits. Unlike the traditional FL incentive mechanism,

considering the immersive experience in Metaverse, both the

model quality and freshness need to be considered. Therefore,

we combine model quality Qm∗
j and freshness Fm∗

j to measure

the satisfaction of MSP Pj for the FL-NFT m∗ as

ϕm∗
j =

(
Qm∗

j

)eQj
+

(
Fm∗
j

)eFj
=

(
Qm∗

j

)λ

+ Fm∗
j , (5)

s.t. λ =
eQj
eFj

> 0, 0 < eQj ≤ 1, 0 < eFj ≤ 1, eQj +eFj = 1, (6)

where eQj and eFj are attention coefficient 1 of model quality

Qm∗
j and freshness Fm∗

j determined by Pj , respectively.

The rationale behind Qm∗
j and Fm∗

j is the contribution

of MUs in FL model training, higher contribution of MUs

leads to higher satisfaction for MSPs. Let θQi and θFi be the

satisfaction contribution in model quality and freshness for Ui,

respectively. We have Qm∗
j =

∑N
i=1 θ

Q
i and Fm∗

j =
∑N

i=1 θ
F
i .

We define satisfaction contributions for Ui as follows:

• The model quality contribution θQi : For Ui, the model

quality contribution is determined by its local models

quality and raw data quantity (i.e., the local data size used

for training). However, there may be a large amount of

redundant data in the training data, so the contribution

evaluated by the total training data size is one-sided. It is

more practical to incorporate data quality based on cross-

entropy [24] as Hi = −
∑d

i=l yllogf(xl), where f(xl) is

the predict value by function f(·) and yl is the labeled

value. Therefore, θQi can be denoted as

θQi =
μ0|Di|

μ1 − 1
R

∑R
i=1 yilogf (xi)

, (7)

where, u0 > 0 and u1 > 0 are the model utility

parameters, which are set according to the loss function,

neural network structure and data distribution [25]. In

this paper, u0 represents the number of model hidden

layers, u1 represents the number of model output layers,

R represents the total round of Ui participates in FL.

• The model freshness contribution θFi : Metaverse services

allow users to immerse themselves via life-like real-time

interaction. The fresher FL-NFT leads to more accurate

prediction, resulting in better immersive experiences.

Inspired by existing work [26], the metric of age of

information (AoI) can be used to denote the duration

of MUs participating in FL-NFT minting. For Ui, the

1eQj = 1 and eFj = 1 denote that only model quality or freshness is

considered by Pj ; eQj +eFj = 1 denotes that both model quality and freshness
are taken into account by Pj .
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duration Ti mainly includes the time of training Tm
i ,

uploading T l
i and consensus T c

i , denoted as

Ti = Tm
i + T l

i + T c
i , (8)

where Tm
i = log(1/Hi)

Di

fi
, the smaller the value Hi

is, the higher accuracy of the local model could be.

Furthermore, the communication resource �i (i.e., band-

width) used by Ui, defined as T l
i = di

�ilog2(1+ϑi)
,

where ϑi denotes the Signal-to-Interference-plus-Noise

Ratio (SINR) for the communication channel. T c
i mainly

depends on different consensus algorithm. A small value

of Ti indicates fisher local model, so the model freshness

contribution θFi can be defined as equation (9), which is

upper bounded by O(log(1/Ti))
9.

θFi = log(1/Ti), (9)

Under rational auction market, Ui can get benefit ratio

from the bids of FL-NFT, which is determined by their

model quality contribution ratio τQi =
θQ
i∑N

i=1 θQ
i

and freshness

contribution ratio τFi =
θF
i∑N

i=1 θF
i

. Therefore, the benefit of Ui

from bid of Pj can be formulated as

δij = qj

(
Qm∗

j

)λ

τQi + fjF
m∗
j τFi , (10)

where qj and fj are MSP Pj’s unit satisfaction bidding

strategies for Qm∗
i and Fm∗

i , respectively.

IV. STRATEGY OPTIMIZATION BASED ON

STACKELBERG GAME

In this section, we construct an imperfect information Stack-

elberg game (IISG) [27] to trade off the cost and benefit by

optimizing the action strategies of MUs and MSPs.

A. Stackelberg Game Formulation

In IISG, we assume that MSPs and MUs are all rational

individuals, in which MUs can make the decision in distributed

manner within MU-DAO. We model the auction interactions

among MSPs and MUs as a multi-leader multi-follower IISG,

in which the MSPs are leaders and MUs are followers.

1) Training strategy optimization of MU in Stage II
In Stage II of IISG, each rational MU Ui can adjust

training strategies (i.e., local iterations and privacy budget)

according to the bids offered by the MSPs within a given

game decision period T . Let Ki
Δ
= (ki1, ki2, . . . , kiM ) and

Ei
Δ
= (εi1, εi2, . . . , εiM ) be the local iterations and privacy

budget of Ui to the FL-NFTs demanded by MSPs P . The

optimization problem for MU Ui within given game decision

period T can be formulated as

Problem 1

maxΦi (Ki,Ei) =
M∑
j=1

δijΛij − Ci, (11)

s.t. C1 : Ci ≤
M∑
j=1

δijΛij , ∀j,

C2 :
kij

ζzisif2
i

+
zisi
bi

≤ T,

(12)

where Λij = h(kij) + h(εij) indicates the benefit of MUs

enjoying the Metaverse service, h(x) is the σ-fair function

adopted in [28] defined as h(x) = 1
1−σx

1−σ 2, δij is the

benefit of MU Ui from the bid of MSP Pj , bi is the bandwidth

used for consensus communication with Ui. C1 ensures that

MU’s total cost cannot exceed the budget constraint of MSPs,

indicating that the budget balance of the auction market. C2
expresses that the MU’s decision time cannot exceed the game

decision period T .

2) Bidding Strategy of MSPs in Stage I
In Stage I of IISG, each rational MSP Pj determines bidding

strategies (i.e., bids of model quality and freshness) according

to the satisfaction to the FL-NFT, which are related with the

training strategies of MUs. Let Qj
Δ
= {q1j , q2j , . . . , qNj} and

Fj
Δ
= {f1j , f2j , . . . , fNj} denote bids of model quality and

freshness offered by MSP Pj accroding to the contribution

ratio of MUs U , respectively. Then, the optimizaiton problem

for MSP Pj can be formulated as

Problem 2

maxΨj

(
Qj ,Fj

)
=

N∑
i=1

(
qijw

q
ij + fijw

f
ij − δij

)
, (13)

s.t. C1 :

N∑
i=1

(qij + fij) ≤ Bj , ∀j,

C2 : tj ≤ T, ∀j,
(14)

where wq
ij and wf

ij are the winning probability for qij and

fij , respectively, tj is the bidding decision time of MSP Pj .

C1 ensures that the total bids are no more than the budget

constraint for MSP Pj . C2 expresses that the decision time

is limited. The winning probability for MSP is relevant to the

proportion of the total bid in general, which can be denoted

as wq
ij =

qij(
qij+

∑m
ij′,j′ �=j

qij′
) and wf

ij =
fij(

fij+
∑m

ij′,j′ �=j
fij′

) 3.

B. Solving Stackelberg Equilibrium of IISG

In this section, we solve the Stackelberg equilibria of IISG

by the backward induction methods, where the existence of

the equilibrium is investigated by the negative definite of the

Hessian matrix, and the first-order partial derivative of utility

derives the unique subgame equilibrium [29].

Theorem 1. The existence and uniqueness of the subgame
equilibrium for MUs in Problem 1 can be guaranteed, i.e., ev-
ery MU has an optimal and unique training strategy (K∗i ,E∗i )
for the number of local iterations and privacy budget.

2h(x) is non-decreasing and concave, i.e.,
∂h(x)
∂x

≥ 0 and
∂2h(x)

∂x2 < 0,
which indicates decreasing marginal utility for MU to the Metaverse service.

3The parameters qij′ and fij′ are the predicted bids of other competitors
excepting Pj for model quality and freshness, respectively.
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Proof. In order to guaranty the existence, we observe the

Hessian matrix of Φi(Ki,Ei) with respect to Ki is

H(Φi) =

[
∂2Φi

∂K2
i

∂2Φi

∂Ki∂Ei

∂2Φi

∂Ei∂Ki

∂2Φi

∂E2
i

]
= diag(HK

ij , H
E
ij ), (15)

and

HK
ij =

[
∂2Φi(Ki,Ei)
∂kij∂kij

′

]
j,j′∈{1,2,...,M}

= −diag(hk
i1, h

k
i2, . . . h

k
ij) < 0,

(16)

where hk
ij = δijk

−σ−1
ij . It is clearly that HK

ij is negative

definite. Then, we derive the second derivative of Φi(Ki,Ei)
with respect to Ei as follows

HE
ij =

[
∂2Φi(Ki,Ei)
∂εij∂εij′

]
j,j′∈{1,2,...,M}

= −diag(hε
i1, h

ε
i2, . . . h

ε
ij) < 0,

(17)

where hε
ij = δijε

−σ−1
ij . We can easily derive that HE

ij is

negative definite, and thus H(Φi) is negative definite and

Φi(Ki,Ei) is concave. Therefore, it can be proved that the

existence of equilibrium solution (K∗i ,E∗i ) in Problem 1.

We further take the first-order partial derivative of Φi to

obtain the equilibrium solution as follows

(K∗i ,E∗i ) = [( −σ

√
Cc

i /δij ,
−σ

√
Cp

i /δij)]. (18)

Since the numbers of local iterations of MUs are within the

positive integer space Z
+. MUs can tune the real number of

local iterations conducted by Stackelberg game through the

following equation

Kr∗
i = �K∗i � , (19)

where �x� is the integer function, denote that �x� = min{ς ∈
Z, ς ≤ n}. So far, we have solved the Stackelberg equilibrium

in Problem 1. By analyzing any utility Ψi for MSP Pj given

in (13) and condition given in (14), we can further investigate

the properties of Ψi(·) as follows.

Theorem 2. The existence and uniqueness of the subgame
equilibrium for MSPs in Problem 2 can be guaranteed,
i.e., each MSP has an optimal and unique bidding strategy
(Q∗j ,F∗j ) for the bids of model quality and freshness.

Proof. We present the Hassian matrix of Ψj(Qj ,Fj) with

respect to bidding strategies Qj as follows

H(Ψj) =

⎡⎣ ∂2Ψj

∂Q2
j

∂2Ψj

∂Qj∂Fj

∂2Ψj

∂Fj∂Qj

∂2Ψj

∂F2
j

⎤⎦ = diag(HQ
ij , H

F
ij ), (20)

and

HQ
ij =

[
∂2Ψj(Qj ,Fj)

∂qij∂qi′j

]
i,i′∈{1,2,...,N}

= −diag(hq
i1, h

q
i2, . . . h

q
ij) < 0,

(21)

where

hq
ij =

wq
ij

qij
+

(
∑n

i′,i′ �=i qi′j) +
∑n

i′,i′ �=i qi′j

(qij +
∑n

i′,i′ �=i qi′j)
3

. (22)

It is clear that HQ
ij is negative definite. Then, we derive the

second derivative of Ψj(Qj ,Fj) with respect to Fj as

HF
ij =

[
∂2Ψj(Qj ,Fj)

∂fij∂fi′j

]
i,i′∈{1,2,...,N}

= −diag(hf
i1, h

f
i2, . . . h

f
ij) < 0,

(23)

where

hf
ij =

wf
ij

fij
+

(
∑n

i′,i′ �=i fi′j) +
∑n

i′,i′ �=i fi′j

(fij +
∑n

i′,i′ �=i fi′j)
3

. (24)

We can easily derive that HF
ij is negative definite, and thus

H(Ψj) is negative definite and Ψj(Qj ,Fj) is concave. There-

fore, it can be proved that Problem 2 has a unique optimal

solution (Q∗j ,F∗j ). By taking the first-order partial derivative

of Ψj(Qj ,Fj), we obtain the equilibrium solution as follows

(Q∗j ,F∗j ) = [(

√√√√ Δ2
q +Δq(

Qm∗
j

)λ
+ 1

−Δq,

√
Δ2

f +Δf

Fm∗
j + 1

−Δf )],

(25)

where {
Δq =

∑n
i′,i′ �=i qi′j

Δf =
∑n

i′,i′ �=i fi′j
. (26)

Therefore, the Stackelberg equilibrium can be achieved

through Theorem 1 and 2. Both MUs and MSPs can derive

their optimal training strategies (K∗j ,E∗j )and bidding strategies

(Q∗j ,F∗j ), respectively. None of them tends to adjust their

strategies to gain higher utilities.

Theorem 3. The proposed incentive mechanism achieves
individual rationality (IR).

Proof. For each MU Ui ∈ U , by observing the utility

function in Eq.(11) and the constraint C1 in Eq.(12) we have

Φi =
∑M

j=1 δij (h (kij) + h (εij)) − Ci ≥ 0. Thus, for each

MU Ui ∈ U , the utility Φi ≥ 0.

For each MSP Pj ∈ P , it will win the auction only when

wq
ij = wf

ij = 1. According to McAfee’s double auction, the

bids of winners satisfy qij + fij ≥ δij . By combining the

constraint C1 in Eq.(14) we have

Ψj =
N∑
i=1

(qij + fij − δij) ≥ 0. (27)

Thus, for each MSP Pj ∈ P , the utility Ψj ≥ 0. So, the

proposed incentive mechanism achieves incentive rationality.

Theorem 4. The proposed incentive mechanism achieves
incentive compatibility (IC).

Proof. In the phase of FL-NFT minting, the MUs op-

timal their training strategies (Ki,Ei) and MSPs optimal

their bidding strategies (Qj ,Fj) based on IISG. The sell-

bids and buy-bids offered by the MU-DAOs and MSPs

are based on their true evaluation of FL-NFT value be-

cause of the payment scheme based on the second price

auction. In our scheme, for each MSP Pj , it satisfies

E(Ψj(Q∗j ,F∗j )) ≥ E(Ψj(Qj ,Fj)), and for each MU Ui it

satisfies E(Φi (K∗i ,E∗i )) ≥ E(Φi (Ki,Ei)). Given a clearing

price of FL-NFT, each buyer Pj ∈ P and seller Ui ∈ U cannot
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improve their utilities by submitting untruthful bids. Therefore,

the proposed mechanism achieves incentive compatibility.

V. SIMULATION AND EVALUATION

We conduct experimental simulations to evaluate the con-

vergence performance of FL-NFT and verify the effectiveness

of our proposed scheme IISG.

A. Simulation Settings

We simulate an MU-DAO by recruiting 10 MUs to par-

ticipate in FL-NFT training and minting. The simulation

environment is a server with an Apple M1 chip of 8-core CPU

and 8GB RAM, and land in macOS Big Sur v11.5.2 operating

system with Python v3.6.10 and PyTorch v0.4.1. Under the

simulation scenario, the MNIST [30] and CIFAR10 [31]

datasets are divided equally into 10 MUs. The neural networks

select multi-layer perceptron (MLP) [32] and convolutional

neural networks (CNN) [33] for model training, which can be

aggregated by FedAvg [25] to update the model parameters.

Each MU executes the mini-batch stochastic gradient de-

scent algorithm [19] to optimize the local model and complete

the cooperative training within MU-DAO. We adjust hyper-

parameters for all datasets and models to the best result among

5 runs. All experiments are conducted through a lightweight

FL open source framework4 as the benchmark, which sets

the clients to participate in FL randomly. We adjust the super

parameter settings of all methods for comparison and reported

the best results of each method in 3 repeated runs. The specific

experimental parameter settings are shown in Table I.

TABLE I
EXPERIMENTAL PARAMETER SETTINGS

Parameters Value
Number of MUs N = 10
Number of MSPs M = 5
SGD momentum Ms = 0.5
Total budget of MSPs Bj = 1000
Model utility parameters μ1 = 10, μ2 = 2
Model training parameters lr = 0.01, bs = 64, k0i = 5
CPU clock frequency of MUs fi ∈ [3, 5]GHz
Privacy budget of MUs εi ∈ [1, 5]
Game decision period T = 10s
Regulatory factor α = 0.3, β = 0.5, ξi = 0.5, θi = 8

B. Results and Analysis

We first compare the quality of the learning model which

was minted to NFT in our IISG with other three schemes,

including random-FL, loss-based and gradient-norm [34] as

shown in Fig. 2. In IISG, MUs can adjust the training strategies

to organize MU-DAO voluntarily for FL model training based

on the IISG. Random-FL is the selected benchmark scheme.

Loss-based and gradient-norm are other two state-of-the-art

training strategies [34], which adjust FL participants according

to training-loss and gradient-norm, respectively.

We first compare the quality of the learning model which

was minted to NFT in our IISG with other three schemes,

4https://github.com/shaoxiongji/federated-learning

including random-FL, loss-based and gradient-norm [34] as

shown in Fig. 2. In IISG, MUs can adjust the training strategies

to organize MU-DAO voluntarily for FL model training based

on the IISG. Random-FL is the selected benchmark scheme.

Loss-based and gradient-norm are other two state-of-the-art

training strategies [34], which adjust FL participants according

to training-loss and gradient-norm, respectively.

In Fig. 2(a), the accuracy of FL model improves from

95.69% to 98.39% after 100 epochs. In Fig. 2(b), the test

accuracy improves 11.49%. In Fig. 2(c), four schemes out-

perform than MLP model in terms of both accuracy and

convergence speed. All schemes get better test accuracy than

MLP model, but the test accuracy of FL-NFT only improve

0.91%. In the Fig. 2(d), we can see that when the epoch is

100, the accuracy of IISG is 67.19%, which is 16.96%, 9.48%

and 12.09% higher than those of random-FL loss-based, and

gradient-norm, respectively. This is because the local iterations

and privacy budget can be adjusted according to the costs and

benefits of MUs in IISG, leading to more rewards from MSPs.

The reason behind it is that the training strategies, includ-

ing local iterations and privacy budget, can be dynamically

adjusted according to the costs and utility of MUs in our

scheme. As a result, the MUs are encouraged to allocate

resources reasonably to provide more high-quality models.

Some fluctuations are normal for the different models and

datasets for model training. As expected, lower test accuracy is

achieved in the CIFAR-10 dataset for both models and under

different datasets. It can be seen that the test accuracy of

random-FL is the lowest, as MUs randomly adjust training

strategies regardless of different cost and utility situations.

VI. CONCLUSION

In this paper, we have proposed an effective ownership

tokenization scheme and an incentive mechanism for learning-

based UGC in the blockchain-driven Metaverse. Specifically,

we have established a decentralized MU-DAO to mint FL-

NFT. The imperfect information Stackelberg game (IISG) has

been adopted to model the auction interactions among MUs

and MSPs under the FL cost-benefit framework to maximize

their utility. The backward induction has been adopted to solve

the equilibrium solution. Numerical results by the simulations

have shown that the quality of learning model minted to NFT

can be increased compared with the existing schemes.
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