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NOSnoop: An Effective Collaborative
Meta-Learning Scheme Against

Property Inference Attack
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Abstract—Collaborative learning has been used to train a joint
model on geographically diverse data through periodically shar-
ing knowledge. Although participants keep the data locally in
collaborative learning, the adversary can still launch inference
attacks through participants’ shared information. In this article,
we focus on the property inference attack during model train-
ing and design a novel defense mechanism, namely, NOSnoop,
to defend such an attack. We propose a collaborative meta-
learning architecture to learn the common knowledge over all
participants and utilize the natural advantage of meta-learning
to hide the sensitive property data. We consider both irrelevant
property and relevant property preservation in NOSnoop. For
irrelevant property preservation, we utilize the inherent advan-
tage of meta-learning to hide the sensitive property data in
meta-training support data set. Thus, the adversary cannot cap-
ture the key information related to the sensitive properties and
cannot infer victim’s private property successfully. For relevant
property preservation, an adversarial game is further proposed
to reduce the inference success rate of the adversary. We con-
duct comprehensive experiments to evaluate the effectiveness of
NOSnoop. When hiding the sensitive property data in meta-
training support data set, NOSnoop achieves an inference AUC
score as low as 0.4984 for irrelevant property preservation, mean-
ing the adversary cannot distinguish whether the training batch
has the sensitive property data or not. When preserving the rel-
evant property, NOSnoop is able to achieve an inference AUC
score of 0.5091 without compromising model utility.

Index Terms—Inference attack, machine learning, meta-
learning, privacy preservation.
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I. INTRODUCTION

W ITH the development of Internet of Things (IoT), the
smart IoT devices have been integrated into all aspects

of our lives (e.g., smart cameras). In order to make better use
of collected data and provide more intelligent decision making,
AI technology has been applied to IoT applications to achieve
the real-time edge intelligence. However, the increasing aware-
ness of data privacy (e.g., faces, identities, and behavioral
habits) motivates users to keep data locally on their own
devices. Privacy concern on large-scale data aggregation also
leads to administrative policies, such as general data protec-
tion regulation (GDPR) in European Union and California
Privacy Act (CPA) in USA. Together with the greatly enhanced
computation capability of end devices, collaborative learning
(termed as federated learning as well) emerges as a vastly
developed learning scheme in real-world IoT applications.
Collaborative learning only requires gradients rather than raw
data from participants for model training; hence, data pri-
vacy protection comes naturally with little cost. Unfortunately,
researchers [1]–[3] found that an attacker could still infer
private information of participants in collaborative learning
merely from shared knowledge, such as gradients, empirical
loss, or model parameters.

As a typical inference attack during training process, the
property (or attribute) inference attack is to infer whether a
training batch has data with a specific property (which is usu-
ally sensitive, e.g., race) or not [3]. To tackle this property
inference attack, many schemes based on cryptographic tools
or differential privacy have been proposed. However, most of
them are not yet for practical usage. Cryptographic schemes
usually need to outsource the calculation to two or more non-
colluding servers, which may be unrealistic in practice or
have privacy issues while using only a single server [4], [5].
Although differential privacy is able to protect participants’
data privacy, it comes with the cost of model utility [6].

When considering privacy protection in collaborative learn-
ing, a key question is which part of knowledge should be
learned and transferred to other participants. Here, we con-
sider the scenarios where participants’ data sets are heteroge-
neous. Hence, participants prefer to learn personalized models
for different individuals than to learn an identical model for all.
Also, they tend to prioritize protection of private properties.
Thus, we focus on collaborative meta-learning architecture,
which is often referred as federated meta-learning [7], [8]
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Fig. 1. Samples of training data. Race is the sensitive property to protect,
and gender and nose are two main labels for two different prediction models.
For prediction of gender, race is irrelevant with the main label gender. For
prediction of nose, race is relevant with the main label nose.

and is to train a common initialization model for all partic-
ipants, where the common initialization model is generally
referred as meta-model. In collaborative meta-learning, each
participant trains its model locally and exchanges its trained
knowledge periodically to update the meta-model. Once the
training of meta-model is complete, each participant can
quickly obtain her/his own personalized model by retraining
the meta-model on her/his own samples. One key point to
note is that meta-learning brings in the unique benefit of fast
adaptation, greatly reducing the number of required samples
for retraining. Compared with the traditional machine learn-
ing, meta-learning includes inner-loop training and outer-loop
training and the inner-loop training of each participant is invis-
ible to the other ones. Thus, meta-learning has the natural
advantage in removing the sensitive-property data from the
outer-loop training data. Although the adversaries eavesdrop
the sharing knowledge, it is difficult for them to infer the
sensitive property information successfully.

The property inference attack does not fade away in collab-
orative meta-learning. The challenge to defend against such
attacks roots in the strong adversary model that the attacker
can obtain internal knowledge, e.g., gradients, of the training
process. In this article, we propose our novel privacy protec-
tion mechanism, NOSnoop, to tackle such powerful attack.
We assume that each sample has a main prediction label and
a sensitive property to protect, as shown in Fig. 1. Noting
that the sensitive property can be relevant or irrelevant with
the corresponding main label, we design NOSnoop consider-
ing the following two cases. Case I: For irrelevant property
protection, the sensitive property does not contribute to the
training of the main label, as illustrated in Fig. 2(a). This
enables us to purposely restrain samples with sensitive prop-
erty in meta-training support data set only rather than in query
data set as well. In this way, the best that an attacker can do
is to exploit gradients from meta-training query data set for
inference, resulting in a much lower success rate. Case II:
For relevant property protection, samples with sensitive prop-
erty need to occur in both meta-training support and query
data set to boost the prediction performance of main label, as
shown in Fig. 2(b). For example, the race property may help
to predict people’s nose size. In this case, we propose to use an

(a) (b)

Fig. 2. Illustration for (a) irrelevant and (b) relevant properties. x is the
observation data, y is the main label to predict, and p is the sensitive property
that victims want to preserve.

adversarial game to reduce the impact of sensitive property as
much as possible from the shared knowledge, thus reducing the
success rate of the attacker. In heterogeneous data, we can still
split the property-preservation data into relevant and irrelevant
sensitive property data. While training the model, all partici-
pants have the same targets to train a collective model. Hence,
the main label is the same for all participants. However, these
participants’ sensitive properties may be different. Therefore,
different participants can independently choose corresponding
privacy preserving mechanisms according to the relationship
between their sensitive properties and the main label. The main
contributions of this article are as follows.

1) Collaborative Meta-Learning Against Property
Inference Attack: We propose the collaborative
meta-learning to learn the common knowledge over
all participants and hide their sensitive property data.
So far as we know, this is the first work that utilizes
meta-learning to defend against property inference
attack in collaborative learning.

2) Sensitive Property Preservation: For irrelevant property
protection, we advocate that only the meta-training sup-
port data set is related to the sensitive property data.
Thus, the shared knowledge is only calculated on the
nonsensitive property data (meta-training query data set),
making it difficult for the adversary to infer the sensitive
property. For relevant property protection, we introduce
a feature extractor to obtain the related features and
design a discriminator to detect the sensitive property.
Then, an adversarial game is proposed between fea-
ture extractor and discriminator to reduce the sensitive
property representation from the shared knowledge.

3) Experimental Validation: We comprehensively evaluate
NOSnoop on two real-world data sets. For the irrele-
vant property preservation, the property inference attack
failed with an inference AUC score of 0.4984. For
the relevant property preservation, we obtain the infer-
ence AUC score of 0.5091 with model accuracy of
0.8. We also evaluate the nonprivacy-preserving (NPP)
mechanism and differentially private (DP) mechanism,
resulting in 0.9296 AUC score with 0.8264 model accu-
racy and 0.5232 AUC score with 0.5285 model accuracy
((5, 10−5)-DP), respectively. Our experimental results
confirm the effectiveness of NOSnoop and its superiority
over NPP and DP.

II. RELATED WORK

In recent years, privacy leakage has gained widespread con-
cern in both academia and industry, such as the location
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privacy [9]–[11], social privacy [12], [13], identity pri-
vacy [14], [15], and so on. With the development of machine
learning, the privacy issues in machine learning have also
received a lot of attention and many valuable works have been
presented [16]–[18].

A. Privacy-Preserving Machine Learning

Machine learning includes centralized learning and dis-
tributed learning. In centralized learning, the service provider
(model trainer) collects the training data from data owners
and trains the model on the joint data set. In distributed learn-
ing, data owners take part in the model training, and a global
model is learned collaboratively through sharing knowledge.
Although the distributed learning does not need the partici-
pants to share their training data, it still faces the privacy issues
during the model training [19]–[22]. Wei et al. [19] presented a
principled framework for evaluating and comparing different
forms of client privacy leakage attacks. They provided for-
mal and experimental analysis to show how adversaries could
reconstruct the private local training data by simply analyz-
ing the shared parameter update from local training. Thus,
many privacy-preserving mechanisms have been designed to
defend such attacks in centralized or distributed learning. To
protect the privacy in centralized learning, Wang et al. [23],
Mohassel and Zhang [24], and Wagh et al. [25] proposed sev-
eral protocols based on the secure multiparty computations
to achieve the model training over encrypted real numbers.
However, they did not consider the collected data that typi-
cally comes from several data owners and is encrypted with
different keys. To achieve the model training on multikey
encrypted data, Li et al. [26] and Ma et al. [4] introduced two
privacy-preserving mechanisms based on the homomorphic
encryption. Recently, distributed learning, such as collabora-
tive learning and federated learning [27], has become popular
and many privacy-preserving distributed learning architectures
have been designed [1], [2], [28]. Abadi et al. [2] advanced
a DP technique to add Gaussian noise to the shared gradi-
ents and proposed moments accountant technique to analyze
the privacy loss. Xie et al. [29] and Zhou et al. [30] also
came up with two DP mechanisms to tackle the data attacks.
Although these DP mechanisms protected the privacy well,
Truex et al. [6] showed that the tradeoff between classification
accuracy and attack vulnerability could not be achieved at the
same time. Phong et al. [5] put forward a privacy-preserving
aggregation algorithm for parameter gradients based on addi-
tively homomorphic encryption. However, participants’ local
data can still be surreptitiously extracted from two adjacent
versions of parameters.

Apart from schemes based on differential privacy and cryp-
tography, there are other methods to protect privacy in machine
learning. Malekzadeh et al. [31] introduced a replacement
autoencoder to protect user’s privacy. The autoencoder learned
how to transform discriminative features of data that corre-
sponded to sensitive instances into some features that had been
more observed in nonsensitive instances. Nasr et al. [32] con-
structed a Stackelberg game to protect the membership privacy.
Yang et al. [33] also built a purification framework to defend

TABLE I
COMPARISON SUMMARY

the membership inference attack. However, these systems can-
not handle property inference attacks well. We compare these
existing schemes with NOSnoop in Table I.

B. Inference Attack in Machine Learning

There are two main types of inference attacks in machine
learning: 1) membership inference [34], [35] and 2) property
inference [3], [36]. Shokri et al. [35] demonstrated the mem-
bership inference attack by designing several shadow models
to learn the difference of target model’s outputs influenced
by different input samples. Yu et al. [37] considered the
membership inference as a double-edged sword and utilized
some private augmented data to sharpen its good side while
inhibiting its bad side. Hidano et al. [38] proposed a trans-
fer shadow training technique, where an adversary employed
the parameters of the transferred model to construct shadow
models, to significantly improve the performance of member-
ship inference when a limited amount of shadow training data
was available to the adversary. Chen et al. [20] proposed the
first generic membership inference attack model that could be
instantiated in a large range of settings and was applicable to
various kinds of deep generative models.

For the property inference, one scenario is to infer whether a
given sample has the hidden sensitive property with black-box
access to the trained model [36]. Another is to infer whether
a training batch has the sensitive property data during the
model training [3]. Melis et al. [3] designed passive and active
property inference attacks by analyzing the collected gradients
during model training. Luo et al. [39] also presented several
property inference attack methods to investigate the potential
privacy leakages in the model prediction stage of vertical fed-
erated learning. In this article, we focus on the second property
inference scenario and propose a novel mechanism to defend
the attack.

C. Collaborative Meta-Learning

Collaborative meta-learning is also referred as feder-
ated meta-learning. The concept of meta-learning has been
proposed for many years. But the advances of gradient-based
optimization bring it into the light again as a promising
solution for fast learning. In particular, Finn et al. [40]
proposed one gradient-based algorithm, called model agnostic
meta-learning (MAML), which directly optimizes the learn-
ing performance with respect to an initialization of the model
such that even one-step gradient decent from that initializa-
tion can still produce good results on a new task. Similar
to the federated learning, meta-learning is also a multitask
learning. However, federated learning tries to train a global
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model that fits the data as accurately as possible and is not
designed to achieve fast learning over small data sets. Thus,
federated meta-learning is proposed and tries to achieve fast
adaptation and good performance over even small training
data set. Chen et al. [41] adopted meta-learning to handle
some bottlenecks of federated learning in real-world applica-
tions. They designed a federated meta-learning framework to
limit the scale of shared knowledge, so as to achieve effi-
cient communication and rapid convergence. Lin et al. [8]
proposed a platform-aided collaborative meta-learning frame-
work to achieve real-time edge intelligence in IoT applications.
They investigated the convergence of the proposed collabora-
tive meta-learning algorithm under mild conditions on node
similarity and the adaptation performance at the target edge.
Fan and Huang [42] also proposed a federated few-shot learn-
ing framework to learn a few-shot classification model that
can classify unseen data classes with only a few labeled sam-
ples. With the federated learning strategy, the designed system
could utilize many data sources while keeping data privacy and
communication efficiency.

III. PRELIMINARIES

A. Model Agnostic Meta-Learning

As described above, the key question of privacy-preserving
collaborative learning is what knowledge should be learned
and transferred. Since meta-learning has a strong general-
ization ability, we propose to use it to learn the common
knowledge over all participants’ data sets and share this
learned knowledge to achieve collaborative learning. Meta-
learning includes two phases: 1) meta-training and 2) meta-
adaption [43]. Meta-training is used to learn the common
knowledge from all tasks. Based on the learned knowledge,
meta-adaption can quickly adapt to a new task using only a
few samples.

While training the model using meta-learning, the training
data set consists of two parts: 1) meta-training part, denoted
by Dtrain and 2) meta-adaption part Dadapt. Each meta-training
task or meta-adaption task also has two data sets: 1) support
data set and 2) query data set. For meta-training tasks, we
denote their support data set and query data set as Ds

train and
Dq

train, respectively. Similarly, the support data set and query
data set for meta-adaption tasks are Ds

adapt and Dq
adapt. As

shown in Fig. 3, the meta-training process includes inner-loop
update (base-model update) and outer-loop update (meta-
model update). Let us take the ith meta-training task Ti as an
example. Ti’s support and query data set are {Ds

train,i,Dq
train,i}.

At the beginning, Ti initializes the base model with the cur-
rent meta-model �. Then, Ti performs the inner-loop update
as follows and obtains a trained base-model θi based on the
support data set Ds

train,i:

θi ← θi − η1∇θi

1
∣
∣
∣Ds

train,i

∣
∣
∣

∑

{x,y}∈Ds
train,i

Li
(

fθi(x), y
)

(1)

where fθi(·) is the base model, Li(·) is the loss function for Ti

in inner loop, and η1 is the learning rate in inner loop update.
After that, Ti evaluates the trained base model θi on

the query data set Dq
train,i and obtains the empirical loss

Fig. 3. Overview of the meta-training process.

TABLE II
DEFINITIONS AND NOTATIONS IN NOSNOOP

Li(fθi(x), y). Li(fθi(x), y) measures the quality of base model
θi in terms of the total loss of using meta-model � across all
tasks. This meta objective is now minimized to optimize the
model parameters �. It is these parameters � that contains the
across-task knowledge. The optimization of this meta objective
is called the outer-loop update process. Next, meta-learning
aggregates all the query losses calculated in the meta-training
tasks and updates the meta-model � in the outer loop

�← �− η2∇�

1

N

N
∑

i=1

1
∣
∣
∣Dq

train,i

∣
∣
∣

∑

{x,y}∈Dq
train,i

Li
(

fθi(x), y
)

(2)

where η2 is the learning rate for outer loop update, N is the
number of meta-training tasks, fθi(·) is the trained base model
in inner loop, and Li(fθi(x), y) is the loss of fθi(·) on Ti’s query
data set Dq

train,i.
When adapting the meta-model to new tasks, we can also

use Ds
adapt,i (usually a small data set) to update the meta-model

� and evaluate the trained model on Dq
adapt,i. Finally, we can

obtain a personalized model relying on the meta-adaption data
set. For more clarity, some notations are listed in Table II.

B. Property Inference Attack

In collaborative learning, an adversary can launch inference
attacks on participant’s shared knowledge and obtain sensitive
information [3], [5]. In this article, we consider the property
inference attack during model training. We assume that the
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Fig. 4. Overview of NOSnoop.

adversary has auxiliary data consisting of sensitive property
data points and nonsensitive property ones, the same as [3].

Property inference attacks can be passive or active attacks.
In the passive property inference attack, the adversary can join
the model training and generate aggregated updates over the
auxiliary data points. The attack is passive as the adversary just
observes the updates and does not change the model training
process including the local and global collaborative training.

In the active property inference attack, the adversary can
modify its local model architecture to launch an attack. We
assume that each record has a main label y for main task
and a sensitive property label c. The adversary integrates its
local model with an augmented property classifier and joins
the model loss as follows [3]:

Ladv = αL
(

fθadv(x), y
)+ (1− α)L

(

fθadv(x), c
)

(3)

where α is a normalization parameter, fθadv(·) is the current
trained model of the adversary, L(·) is the loss function for col-
laborative training, and {x; y, c} is the training data set with
main label y and property label c. As indicated in [3], the
above Ladv caused the trained model to learn separable rep-
resentations for data records with and without the sensitive
property.

IV. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. Framework of NOSnoop

As shown in Fig. 4, our proposed NOSnoop system com-
prises two parts: 1) central server (CS) and 2) participants.
To achieve the privacy preservation in collaborative learning,
we introduce collaborative meta-learning to learn the across-
task knowledge and obtain a generalization meta-model. Then,
participants can further train personalized models over their
meta-adaption data sets.

1) CS manages the global parameters of the collaborative
training model (i.e., the meta-model in meta-learning)
and performs the outer loop update training based on
the received empirical loss from participants. After com-
pleting the meta-training, CS releases the meta-model
parameters to participants to perform meta-adaption.

2) Participants own their local training data (including meta-
training data and meta-adaption data) and they have the

same purpose for collaborative learning. At the begin-
ning of meta-training, participants initialize the base
model with the downloaded parameters from CS. Then,
participants perform the inner loop update over their
meta-training support data set and calculate the empir-
ical loss over the meta-training query data set. After
that, participants upload the query loss to CS to update
the meta-model. Finally, after the meta-training, partici-
pants download the meta-model from CS and retrain their
personalized model on their meta-adaption data sets.

In NOSnoop, the secure socket layer (SSL) or transport
layer security (TLS) protocol is adopted to secure all com-
munications, which ensures the data integrity and authenticity
between two communication entities.

B. Adversary Model

Here, we assume that CS and participants are honest-but-
curious. Although they strictly perform the model training,
they are also interested in gathering or learning other parties’
private information during the training process. Based on such
an assumption, we introduce an active adversary A that has
the auxiliary data sampled from the same class as the victim’s
data and launches property inference attack to infer whether
the sensitive property data appear in the training batch or not.
The adversary A has the following capabilities.

1) A can eavesdrop all communications to obtain the
shared knowledge and launch an active attack to inter-
cept and forge the transmitted messages.

2) A can compromise CS to observe the outer loop update
process for meta-model. It can collect the received
losses from participants and launch the passive property
inference attack.

3) A can compromise one or more participants, except the
victims, to launch active or passive property inference
attack as described in Section III-B. However, A is still
honest that A follows the collaborative model training
protocol and submits the nonmalformed messages.

C. Privacy Requirement

In NOSnoop, we try to protect participants’ sensitive prop-
erty in training data. Although the membership inference is a
typical inference attack, its goal is to infer whether a given
record appears in the training data set or not and reveal
whether this record has the sensitive property. This member-
ship inference attack has been demonstrated that the attack
accuracy is often misleading and a simple blind attack, which
is highly unreliable and inefficient in reality, can often rep-
resent similar accuracy [44]. Thus, in this article, we focus
on the property inference attack during collaborative model
training. Our NOSnoop should preserve participants’ sensitive
property and make the adversary in Section IV-B fail to dis-
tinguish whether a training batch has sensitive property data
records or not.

V. DETAILS OF NOSNOOP

In this section, we present the details of NOSnoop. Since
the across-task knowledge can be learned in meta-learning and
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can quickly adapt to the new tasks using only a few samples,
we believe that meta-learning has strong generalization ability
for the meta-training tasks. Hence, in collaborative learning,
we treat each participant as a task node and participants
perform the meta-training tasks on their local training data.
Thus, the shared common knowledge can be learned through
meta-training and the collaborative model (meta-model in
meta-learning) is trained after several epochs. Afterward, each
participant trains its personalized model using meta-adaption
on the meta-adaption data set. Since the information sharing
just occurs in meta-training, the adversary can only col-
lect the shared loss in meta-training and observe nothing in
meta-adaption. In the following, we will first discuss how to
protect the sensitive irrelevant and relevant properties and then
introduce the passive and active property inference attack in
NOSnoop. Since all participants can adopt the same strategy
to achieve the sensitive property preservation, we take partic-
ipant Ti as an example to perform the privacy preservation in
the following sections.

A. Irrelevant Property Preservation

As illustrated in Fig. 2(a), since sensitive property p is irrel-
evant with main task label y, the extracted features related to
property p have little influence on the training accuracy of the
main task. For example, when we train a model to predict
the gender (the main label) of a person, the sensitive prop-
erty race which victims want to preserve is irrelevant with the
label gender. Hence, we can hide the training data that has
sensitive property p to reduce the success rate of the property
inference attack.

In meta-training, Ti has the support data set Ds
train,i and

query data set Dq
train,i to train the base model. Ti performs the

inner loop update over Ds
train,i and calculates the query loss

over Dq
train,i. So if the adversary collects the shared knowledge,

it just observes the empirical loss, which is directly related to
Ti’s query data set Dq

train,i and indirectly related to the support
data set Ds

train,i. Therefore, we can use the support data set to
conceal the training data that has the sensitive property.

Before starting the meta-training, Ti filters out the data
records that have the sensitive property from the meta-training
data set, denoted by Dsens,i. Then, the remaining data set that
does not have the sensitive property is denoted by Dnonsens,i. To
construct the support data set and query data set, Ti also splits
the nonsensitive property data set Dnonsens,i into two parts: 1)
Ds

nonsens,i and 2) Dq
nonsens,i. Thus, the support data set for meta-

training is Ds
train,i = Dsens,i ∪Ds

nonsens,i and the query data set
is Dq

train,i = Dq
nonsens,i. As such, in the inner loop update, Ti

randomly chooses a training batch from the support data set
Ds

train,i, and may have or may not have sensitive property data,
to feed the base model. After several iterations, Ti randomly
chooses a data batch from the query data set Dq

train,i to evaluate
the trained base model and uploads the calculated loss to CS.
Since the query data set does not have any sensitive property
data record, the uploaded loss is only directly related to the
nonsensitive property data and it is difficult for the adversary
to infer whether this training epoch used the sensitive property

Algorithm 1: Irrelevant Property Preservation
Data: Training datasets Di and sensitive property p.
Result: Participant Ti’s personalized model.

1 (@Ti): split training dataset into Dtrain,i and Dadapt,i;
2 (@Ti): filter out Dsens,i from Dtrain,i and the remaining

set denoted by Dnonsens,i;
3 (@Ti): split Dnonsens,i into two parts: Ds

nonsens,i and
Dq

nonsens,i;
4 (@Ti): construct Ds

train,i = Dsens,i∪ Ds
nonsens,i and

Dq
train,i = Dq

nonsens,i;
5 while True do
6 (@Ti): initialize the base-model using the latest

meta-model, train the base-model over Ds
train,i in

inner-loop;
7 (@Ti): evaluate the trained base-model on Dq

train,i;
8 (@CS): aggregate the query loss received from all

participants and update the meta-model;
9 end

10 (@Ti): retrain the base-model on Dadapt,i to obtain the
personalized model.

data or not. We summarize the irrelevant property preservation
in Algorithm 1.

B. Relevant Property Preservation

When training the model of which the main prediction label
is relevant to the sensitive property as illustrated in Fig. 2(b),
we may reveal the sensitive property data to learn the across-
task knowledge to increase the performance. If we still conceal
the data labeled with sensitive property in support data set (as
discussed in Section V-A), the trained model may have a poor
utility because of missing the knowledge about sensitive prop-
erty p. Thus, while training the main task, we should evenly
distribute the sensitive property data into the support data set
and query data set for the meta-training. In this case, this
constructed query data set may greatly increase the privacy
leakage of the sensitive property. To defend against the prop-
erty inference attack in relevant property model training, we
construct an adversarial game and design a discriminator to
help to conceal the sensitive property p.

We first preprocess the training samples in meta-training
data set Dtrain,i and add an additional label c of the sensi-
tive property whether the sample has (c = 1) or does not
have (c = 0). Then, a feature extractor F is constructed to
extract the features from the training samples. Next, a main-
label predictor P and a sensitive property discriminator D are
also designed to achieve the main label prediction and reduce
the sensitive property representation in shared knowledge. We,
respectively, present the designs of F, P, and D as follows.

1) Feature Extractor F: In NOSnoop, the feature extractor
is used to extract the feature representations for main label
and sensitive property over the representation space. Thus,
when we input the meta-training data {x, y} ∈ Dtrain,i, we
want to extract the representation m = Fθfea,i(x) to preserve
the features, which are necessary to predict the main label
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y while reducing the features related to the sensitive prop-
erty p. When evaluating NOSnoop with neural network in
Section VII, we utilize the first two convolutional layers of
constructed VGGNet as the feature extractor. Since the con-
volutional layer can learn the generic image features [45], we
use the designed feature extractor to learn the representation
related to main label y and sensitive property p simultane-
ously. Then, based on the extracted features m, we can train
P to predict main label y, denoted by Pθpre,i(m), and train D
to predict sensitive property label c, denoted by Dθdisc,i(m).

2) Main-Label Predictor P: The predictor is designed to
achieve the main label prediction on meta-training data set. To
obtain a high performance to predict the main label, we need
to minimize the empirical loss to optimize the predictor and
feature extractor. Thus, we define Ti’s main-label prediction
loss as

Lpre,i ←
∑

{x,y}∈Dtrain,i

Li
(

Pθpre,i

(

Fθfea,i(x)
)

, y
)

. (4)

3) Sensitive-Property Discriminator D: The discriminator
is trained to predict the sensitive property label c based on the
extracted features m. However, to tackle the property inference
attack, discriminator D needs to protect the private information
related to p while achieving a good performance to predict
the sensitive property label c. It means that we need to reserve
the invariance and eliminate the variations of label c from the
extracted features m. Thus, we introduce an adversarial pro-
cess [46] to enable the feature extractor F to minimize the loss
of the sensitive property prediction. Simultaneously, the sen-
sitive property discriminator D also fights to maximize the
same loss of predicting the sensitive property label. Intuitively,
the feature extractor and the discriminator form an adversarial
game where the feature extractor tries to conceal the label c
but the discriminator tries to detect it. In the evaluation, we
utilize the latter two convolutional layers of VGGNet as the
discriminator. The discriminator loss is defined as follows:

Ldisc,i ←
∑

{x,c}∈Dtrain,i

Li
(

Dθdisc,i

(

Fθfea,i(x)
)

, c
)

. (5)

Formally, F, P, and D jointly play the following adversarial
game:

min
F,P

max
D

L(F, P, D) (6)

where L(F, P, D) = Lpre,i − λLdisc,i, λ is a hyperparameter to
adjust the strength of the discrimination.

To achieve the adversarial game, we introduce a gra-
dient reversal layer, which was proposed by Ganin and
Lempitsky [46] to train all the three components together with
a standard machine learning optimizer. Mathematically, gradi-
ent reversal layer can be treated as a “pseudofunction” Rλ(x),
which has the following properties:

Rλ(x) = x
dRλ

dx
= −λI (7)

Algorithm 2: Relevant Property Preservation
Data: Training datasets Di and sensitive property p.
Result: Participant Ti’s personalized model.

1 (@Ti): split training dataset into Dtrain,i and Dadapt,i;
2 (@Ti): add an additional label c for each sample in
Dtrain,i to indicate its sensitive property label;

3 (@Ti): randomly spilt Dtrain,i into Ds
train,i and Dq

train,i;
4 (@Ti): construct the feature extractor F, main-label

predictor P, and sensitive-property discriminator D;
5 (@Ti): add a gradient reversal layer between F and D;
6 while True do
7 (@Ti): update the base-model with adversarial game

on Ds
train,i:

θfea, θpre, θdisc ← min
F,P

max
D

L(F, P, D);

8 (@Ti): calculate the empirical loss on Dq
train,i;

9 (@CS): aggregate the query loss received from all
participants and update the meta-model;

10 end
11 (@Ti): retrain the base-model on Dadapt,i to obtain the

personalized model.

where I is an identity matrix. Then, we reformulate the
empirical loss L(F, P, D) as follows:

L(F, P, D)←
∑

{x,y}∈Ds
train,i

Li
(

Pθpre,i

(

Fθfea,i(x)
)

, y
)

+
∑

{x,c}∈Ds
train,i

Li
(

Dθdisc,i

(

Rλ

(

Fθfea,i(x)
))

, c
)

. (8)

Then, we can use the standard optimization algorithm to train
our model. We summarize the relevant property preservation
in Algorithm 2.

C. Passive and Active Property Inference Attack

In our adversary model, we assume the adversary could
compromise CS or participants. If the adversary compromises
CS, it could collect victim’s empirical loss calculated on the
meta-training query data set and can only launch the passive
property inference attack. While compromising participants,
the adversary could recover victim’s empirical loss or the
aggregated loss over several participants and launch the pas-
sive or active inference attack. If the system just has two
participants, one of them is the adversary and the other one
is the victim. In this case, the adversary can recover the vic-
tim’s loss calculated on its meta-training query data set. But
if there are three or more honest participants in the system,
the adversary will only recover the aggregated loss.

To judge whether the training batch has the sensitive prop-
erty data or not, the adversary needs to construct a binary
property classifier, denoted by fsens. Then, before starting the
inner-loop update, the adversary first snapshots the base model
(or meta-model) at each epoch, denoted by θs, and prepares
the training data for fsens based on its auxiliary data men-
tioned in Sections III-B and IV-B. With the snapshot model θs,
the adversary chooses a data batch with the sensitive property
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Fig. 5. Pipeline of property inference attack.

from its auxiliary data and calculates the parameter gradients,
denoted by gsens. Then, a nonsensitive property data batch is
also chosen to calculate the gradients, denoted by gnonsens. The
adversary labels 1 and 0 for gsens and gnonsens, respectively, and
collects these gradients as training data for fsens. Next, based on
the reversed loss, the adversary also calculates the parameter
gradients over the snapshot model θs and stores the gradients
as the test data for fsens. After the meta-training, the adver-
sary trains fsens on the collected training gradients and obtains
the attack results by testing the trained fsens on the collected
testing gradients. For clarification, we illustrate the property
inference attack pipeline in Fig. 5.

VI. SCALABILITY OF NOSNOOP

Although NOSnoop can resist the property inference attack
launched through the shared knowledge, many other infer-
ence attacks may cannot be defended, such as the membership
inference attack, data recovery attack, model inversion attack,
and so on. Hence, we can adopt a more stringent privacy-
preserving mechanism to protect the model training and
release process. As two typical privacy-preserving mecha-
nisms, differential privacy and homomorphic encryption are
usually designed into the training process.

To protect the model training process, we can use the homo-
morphic encryption (or differential privacy) to encrypt (or
sanitize) the shared empirical loss. If we sanitize the shared
loss by differential privacy, CS can perform the outer loop
model update as usual. Although the added noise may reduce
the model accuracy, this sanitized method can resist many
inference attack, such as the membership inference attack,
model inversion attack, and so on. While using the homomor-
phic encryption to protect the empirical loss, each participant
needs to encrypt the shared knowledge before uploading and
CS performs the outer loop update over encrypted loss and
parameter gradients. To achieve the model update over cipher-
text, we can use the toolkit in [47] to perform the ciphertext
calculation during model training. However, this encryption
strategy will lead to lower model training efficiency.

To protect the released model, we usually adopt the differ-
ential privacy to sanitize the trained model parameters. After
that, the output of the trained model will be influenced and
it is difficult for the attackers to infer the architecture and
parameters of the trained model through the output of the
model.

(a) (b)

(c) (d)

Fig. 6. Active inference against irrelevant properties. (a) LFW: Model accu-
racy. (b) LFW: Inference AUC score. (c) Adult: Model accuracy. (d) Adult:
Inference AUC score.

VII. PERFORMANCE EVALUATION

In this section, we validate NOSnoop with three real-world
data sets, labeled faces in the wild (LFW) [48], Facescrub [49],
and Adult Income data set [50]. For the first two data sets, the
model architecture is the same one as in [40] and [43], which
is a VGGNet comprised by four convolutional layers. For the
Adult data set, the model is designed as a four-layer neural
network with batch normalization. We fix the meta-training
to 10 000 epochs and the meta-adaption to 20 epochs, choose
N = 8, α = 0.3, and set MAML as a 2-way-5-shot learning.
The experiments are conducted over a machine with a 2.6-GHz
32-core CPU, 128-GB RAM, and three TITAN V GPUs.

While evaluating the irrelevant properties, we choose gen-
der (or income) as the main label and race as the sensitive
property for LFW (or Adult). For the relevant property eval-
uation, we choose nose size in LFW as the main label and
the sensitive property is also race. In the property inference
attack, we assume the adversary can steal the specifical loss of
victim (only victim and we use OV for short hereafter) or can
reverse the aggregated loss calculated over several participants
(not only victim and we utilize NOV for short hereafter). We
represent the data set that has sensitive property data as Dsens.
If we put the sensitive property data only in Ds

train, we denote
Dsens = S (for conciseness in the results). If the sensitive
property data are evenly distributed in both Ds

train and Dq
train,

we denote Dsens = Q. When using the adversarial game with
parameter λ, Q(ν) means Dsens = Q and λ = ν. We use the
AUC score to evaluate the performance of our defence. The
AUC score close to 0.5 indicates that NOSnoop can defend
against the property inference attack well.

A. Evaluation of Irrelevant Property Preservation

We first evaluate the privacy preservation of irrelevant prop-
erties. The simulation results of active inference attack are
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(a) (b)

Fig. 7. Preserving the occurring sensitive property (best viewed for online color version). (a) Inference attack for identity occurrence. (b) Inference against
occurring identity in Ds

train.

TABLE III
INFERENCE AGAINST IRRELEVANT PROPERTIES (DSENS = S)

shown in Fig. 6. We consider the adversary steals the empiri-
cal loss in two cases: 1) OV and 2) NOV. Since the sensitive
property p is irrelevant with the main prediction label, we
regard that p in Ds

train or Dq
train has no effect on the trained

model accuracy. As shown in Fig. 6(a) and (c), the model
accuracy does not have an obvious change when Dsens = S
or Dsens = Q. Although we vary the parameter λ in case of
Dsens = Q, it just has a slight influence on the model accuracy.
When Dsens = S , we find that the active property inference
attack almost failed [AUC score ≈ 0.5, as shown in Fig. 6(b)
and (d)]. But if Dsens = Q, the AUC score reaches 0.78 when
λ = 0 in case of OV for LFW. It means the adversary has a
high probability to infer p. Another interesting result is that
if the victim has one or more honest participants to train the
model collaboratively, the adversary also cannot infer the sen-
sitive property [the case of NOV in Fig. 6(b) and (d)]. Hence,
when preserving the sensitive property that is irrelevant with
the main label, we can hide the sensitive property data in Ds

train
without compromising the model accuracy.

We also evaluate the passive inference attack and compare
the results with active inference attack in Table III. Since the
active inference attack still cannot infer the property success-
fully, the passive inference attack also failed when we put the
sensitive property data in Ds

train in case of OV or NOV. The
active inference has a stronger ability to distinguish the feature
representation than passive. So the passive attack also failed
when we protect the irrelevant sensitive property in Ds

train.
In [3], the adversary can infer a suddenly occurring property

during model training. Therefore, we also evaluate NOSnoop
to show that it can defend this attack. Similar to [3], the
main prediction task is gender classification on Facescrub data
set. The purpose of adversary is to infer whether and when
a certain person appeared in the training batch. We fix the
collaborative training to 2500 epochs and the adversary starts

collecting the empirical loss from 100 epochs. We arrange
two specific identities that appear in certain epochs: ID 1
appears in 0 ∼ 500 and 1500 ∼ 2000 epochs, ID 2 appears
in 500 ∼ 1000 and 2000 ∼ 2500 epochs, and the mixture of
ID 1 and ID 2 appears in 1000 ∼ 1500 epochs. As shown in
Fig. 7(b), when we hide the occurring identity in meta-training
support data set Ds

train, the adversary cannot distinguish in
which epoch the identity occurs. If we do not take such a
privacy preservation measure, the adversary will easily infer
the occurrence of identities, as shown in Fig. 7(a).

B. Evaluation of Relevant Property Preservation

To show the preservation of relevant properties, we evaluate
NOSnoop on the LFW data set and set nose size as the main
prediction label. In the case of OV, we find that the adversary
obtains a high AUC score when we just put the sensitive prop-
erty data in Dq

train, as shown in Fig. 8(b). Thus, we introduce
the adversarial game, which is described in Section V-B and
discriminate the sensitive property by adjusting parameter λ.
When we set λ = 3, we find that the inference AUC score is
close to 0.5, which means the inference attack fails. It is also
found that when λ = 5 and 10, the proposed scheme can still
achieve good performance to defend the property inference
attack, demonstrating the robustness of the proposed scheme.
However, as the sensitive property is relevant with the main
predicted label, it also influences the main label prediction
when we conceal the sensitive property. As shown in Fig. 8(a),
by varying λ, we find that the training accuracy of meta-model
decreases slightly. But after retraining in the meta-adaptation
process, participants’ personalized model accuracy is almost
not influenced and remains at 0.8. Although we can put the
sensitive property data in Ds

train to obtain a low inference AUC
score, it will greatly reduce the trained model accuracy, even
after the retraining process [Dsens = S in Fig. 8(a) and (b)].

In the case of NOV, the adversary cannot obtain the vic-
tim’s empirical loss. Thus, it is difficult for the adversary to
launch the inference attack successfully, which has been eval-
uated for the irrelevant property in Fig. 6. For the relevant
property preservation, we also find similar results, as shown
in Fig. 9. In addition, it may also be found that the proposed
scheme’s performance is stable and robust when λ ≥ 3 in
terms of accuracy and tackling property inference attack. Since
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(a)

(b)

Fig. 8. Active inference (OV case) against relevant properties. (a) Model
accuracy. (b) Inference AUC score.

the adversary can only obtain the aggregated loss from several
participants, it cannot infer the sensitive property even if we
put the sensitive property data in Dq

train and set λ = 0. Hence,
if one or more honest participants take part in the collabora-
tive training, the victim can put the sensitive property data in
Dq

train to ensure the training model accuracy without worrying
about the property inference attack.

We show the model training process for different Dsens
(S,Q(0),Q(3)) in Fig. 10. From the simulation results, we
find that all three meta-training processes can quickly reach
convergence as shown in Fig. 10(a)–(c). But the testing accura-
cies of meta-models are different. When we put the sensitive
property data in Ds

train (Dsens = S), the testing accuracy of
meta-model only reaches about 0.65. But if we put the relevant
sensitive property data in Dq

train and set λ = 0, the testing accu-
racy reaches 0.7. The reason for this is that the victim shares
the empirical loss calculated on the sensitive property data to
help to update the meta-model. Since the features extracted
from relevant property help to predict the main label, CS can
obtain more useful information from the received empirical
loss. If we set λ = 3 to reduce the features related to the
sensitive property, CS misses some necessary information to
update the meta-model. So the meta-training also obtains a low
testing accuracy when we set Dsens = Q(3). But after retrain-
ing in meta-adaptation, the model accuracies for Dsens = Q(0)

and Q(3) just have a little difference, as shown in Fig. 10(d). If
more participants conceal their sensitive properties by adver-
sarial game, this accuracy difference may be enlarged. But that
is still acceptable. If participants hide the sensitive property
data in Ds

train, CS obtains nothing about the sensitive property
to update the meta-model and this cannot be remedied. So

(a)

(b)

Fig. 9. Active inference (NOV case) against relevant properties. (a) Model
accuracy. (b) Inference AUC score.

(a) (b)

(c) (d)

Fig. 10. Training accuracy for relevant properties. (a) Dsens = S. (b) Dsens =
Q(0). (c) Dsens = Q(3). (d) Meta-adaption retrain accuracy.

the retraining model accuracy is still lower than the case of
Dsens = Q.

Finally, we further compare NOSnoop with the NPP mech-
anism and DP mechanism in Fig. 11. Since the adversary
launches the inference attack based on the collected gradients,
we design a DP model using gradient perturbation and use the
Rényi differential privacy [51] to analyze the privacy loss. We
keep δ = 10−5 and vary privacy budget ε between 0.1 and
500. We find that the inference AUC score ≈ 0.5 when we
set ε = 0.1, 1, and 5. But the highest model accuracy is only
0.5285. If we want to improve the model utility by varying ε,
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Fig. 11. Defense performance of NPP and DP.

the AUC score will also increase rapidly. It means the adver-
sary launches the property inference attack successfully. Thus,
we cannot obtain a tradeoff between model utility and the vul-
nerability of property inference attack. In NPP, we can obtain
the highest model accuracy of 0.8264, but the inference AUC
score reaches up to 0.9296, indicating a vulnerable system to
inference attack.

VIII. CONCLUSION

In this article, we have proposed a novel mechanism,
namely, NOSnoop, to defend against property inference attack
in collaborative model training. Specifically, we considered
two cases: 1) irrelevant property preservation and 2) relevant
property preservation. For the irrelevant property preservation,
we introduced the meta-learning and hid the sensitive property
data in the meta-training support data set. Thus, the adversary
could not infer the sensitive property and the model accuracy
was not influenced. For the relevant property preservation, we
needed to put the sensitive property data in meta-training query
data set to ensure the model utility. Therefore, an adversarial
game was constructed to conceal the features about sensitive
property and we improved the model accuracy through model
retraining in meta-adaptation process. We evaluated the effec-
tiveness of NOSnoop and the results justified that NOSnoop
was effective to defend the property inference attack during
model training. As part of our future work, we will consider
the inference attack with the black-box access to the trained
model.
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