
Do Not Perturb Me: A Secure Byzantine-Robust
Mechanism for Machine Learning in IoT
Xindi MA∗, Junying ZHANG†, Jianfeng MA∗, Qi JIANG∗, Sheng Gao‡ and Kang XIE§¶

∗School of Cyber Engineering, Xidian University, Shaanxi, China
†College of Engineering, Peking University, Beijing, China

‡School of Information, Central University of Finance and Economics, Beijing, China
§Key Lab of Information Network Security, Ministry of Public Security, Shanghai, China

Abstract—With the development of Internet of Things (IoTs)
and big data, collaborative machine learning has achieved many
impressive successes in IoT to improve the system performance
and provide more diversified services for people. Although one of
the motivations for collaborative learning is privacy preservation,
the adversary can still launch an inference attack through task
nodes’ shared information. What’s worse, a few task nodes may
perform as a Byzantine attacker to compromise the entire system.
Many Byzantine-robust mechanisms have been proposed, but
they relied on outsourcing the calculation on two non-colluding
servers which were not realistic in practice or had privacy issues
in one-server architecture. In this paper, we design a novel
mechanism for secure Byzantine-robust collaborative machine
learning, namely Omega, to allow IoT devices to achieve the
collaborative model training without exposing their local data to
the others. Specifically, we construct a single-server architecture
to achieve the private aggregation of parameter gradients, which
protects task nodes’ local data even n − 1 of n nodes colluded.
A new secure Byzantine-robust protocol is also designed to resist
the Byzantine attack and this protocol can be extended to any
distance-based robust rule. Furthermore, we prove that Omega
can ensure task nodes’ privacy preservation. Finally, we conduct
an experiment to evaluate Omega over real-world dataset and
empirical results demonstrate that Omega can efficiently achieve
the collaborative machine learning.

I. INTRODUCTION

With the development of Internet of Thing (IoT) and big da-
ta, machine learning has achieved many impressive successes
in IoT applications to improve the system performance and
provide more diversified services for people. Nowadays, the
architectures of machine learning tend to aggregate several
data owners to achieve the collaborative learning, including
the distributed learning and federated learning. Together with
the greatly enhanced computation capability of IoT devices,
collaborative machine learning (termed as federated learning
as well) has emerged as a vastly-developed learning scheme
in the real world IoT application. In collaborative learning,
each task node owns its local training data and trains its local
model. Then, all task nodes periodically exchange their trained
gradients and update the global model with or without a central
server.

Another important motivation for collaborative learning is
the privacy preservation. Because the training data usually

¶Kang XIE is corresponding author. Email: xiekang@stars.org.cn

contains abundant sensitive and private information (e.g., envi-
ronmental data, location, temperature, and so on), data owners
are reluctant to contribute their data due to the privacy and
confidentiality concerns. Hence, many collaborative learning
architectures [1] [2] are specifically designed to achieve the
privacy-preserving machine learning. However, although the
training data is kept locally in collaborative machine learning,
the adversary can still infer task nodes’ private information
from their shared knowledge [1] [3] [4], such as the gradients,
empirical loss, model parameters, and so on.

While using the machine learning in IoT, there are many IoT
devices that are uncontrollable. These devices may induce a
higher risk of model training failures. These include crashes
and computation errors, stalled processes, biases in the way
the data samples are distributed among the processes, but also,
in the worst case, attackers trying to compromise the entire
system. The typical attack is Byzantine attack, i.e., completely
arbitrary behaviors of some of the processes. A Byzantine
participant or worker can behave arbitrarily malicious , e.g.,
sending arbitrary updates to the server. This poses great chal-
lenge to the most widely used aggregation rules, e.g., simple
average, since a single Byzantine worker can compromise the
results of aggregation. To resist this Byzantine attack, many
robust mechanisms have been proposed. However, most of
these system mechanisms are not easy or friendly for practical
usage. The authors in [5] proposed a Byzantine tolerant
gradient descent mechanism without considering the privacy
preservation of data owners. Although He et al. [6] designed a
secure Byzantine-robust machine learning scheme, they relied
on outsourcing the calculation to two non-colluding servers
which are not realistic in practice. Hence, how to achieve the
practical and secure Byzantine-robust machine learning is still
an unsolved challenge in collaborative machine learning.

To tackle the above challenge, we propose a novel mech-
anism, namely Omega, to resist the Byzantine attack while
achieving the privacy preservation. In Omega, task nodes’ pri-
vate local training data will not be revealed and the adversary
cannot infer any private information from the intermediate
results. Based on a distance-based robust aggregation rule,
we achieve the Byzantine-robust machine learning without
revealing the private information for task nodes and central
servers. The main contributions of this paper are as follows:

348

2020 International Conference on Networking and Network Applications (NaNA)

978-1-7281-8954-3/20/$31.00 ©2020 IEEE
DOI 10.1109/NaNA51271.2020.00066

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
 a

nd
 N

et
w

or
k

Ap
pl

ic
at

io
ns

 (N
aN

A)
 |

 9
78

-1
-7

28
1-

89
54

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
N

AN
A5

12
71

.2
02

0.
00

06
6

• Privacy-Preserving Gradient Aggregation: With a central
server managing model parameters, Omega achieves the
collaborative machine learning with single-server archi-
tecture. Based on the homomorphic encryption, a new
protocol is designed to aggregate the model parameters.
The adversary cannot infer any private information about
task nodes’ local training data and intermediate results.

• Defending the Byzantine Attack: In the single-server
architecture, we design a secure protocol to achieve the
Byzantine-robust machine learning. The private distance
between task nodes’ gradients are still kept and the
adversary, including the curious server and task nodes,
cannot infer any private information from the calculation
of Byzantine labels.

• Privacy and Efficiency: We conduct the analysis of
Omega in both theory and practice. Both theoretical
and experimental results show that Omega can achieve
the Byzantine-robust machine learning effectively and
efficiently.

II. RELATED WORK

In the past few years, privacy issues have been gained
significant interests and a lot of mechanisms were proposed to
achieve the privacy preservation, such as social privacy [7]–
[9], location privacy [10], [11], identity privacy [12]–[14], and
so on. With the development of machine learning, the privacy
issues in machine learning also received a lot of attention and
many valuable works have been presented.

Based on the secure multi-party computation, many se-
cure mechanisms have been designed to achieve the privacy-
preserving model training in centralized learning. Wagh et
al. [15] proposed an end-to-end 3-party protocol for fast
and secure computation of deep learning algorithms on large
networks. Mohassel et al. [16] designed several new and
efficient protocols for privacy preserving machine learning for
linear regression, logistic regression, and neural network. To
verify the integrity or correctness of the aggregated results,
Xu et al. [17] proposed the first privacy-preserving and ver-
ifiable federated learning framework based on the NO-hard
problem. However, these works did not consider the collected
data which typically comes from several data owners and is
encrypted with different keys. To achieve the model training
on multi-key encrypted data, Li et al. [18] and Ma et al. [19]
introduced two privacy-preserving mechanisms based on the
homomorphic encryption.

Recently, most research works move future steps to the
distributed learning system. Xie et al. [20] proposed a novel
differentially private proximal gradient algorithm to solve
a general class of multi-task learning formulations, which
trained low accuracy models because of the sanitized noise.
To collaboratively train a Gaussian process regression model,
Fenner and Pyzer-Knapp [21] designed a modular approach
which applied fully homomorphic encryption to only the
sensitive steps without either party gaining access to the other’s
data. However, the above works did not consider the Byzantine

attack. Although He et al. [6] proposed a secure Byzantine-
robust machine learning mechanism, it revealed the gradient
distances to a computing server, which had a serious privacy
leakage problem.

III. PRELIMINARIES

In this section, we outline some preliminaries. Hereinafter,
if all ciphertexts belong to several specific task nodes, we will
use [[x]] instead of [[x]]pkΣ

.

A. Distributed Two Trapdoors Public-Key Cryptosystem

In Omega, we introduce a distributed two-trapdoor public-
key cryptosystem (DT-PKC) [22] to achieve the secure model
training. In detail, DT-PKC consists of the following subalgo-
rithms (see [22] for detailed construction).

KetGen: Given two large primes, constructed parameter N
and generate public key pki, corresponding weak private key
ski, and two partial strong private key SKi and SK2.

Encryption (Enc): Input plaintext x ∈ ZN and public key
pki, output ciphertext [[x]]pki .

Partial Strong decryption step-I (PSD1): Input ciphertext
[[x]]pki

and partial strong private key SK1, output partial
decrypted ciphertext sdi1.

Partial Strong decryption step-II (PSD2): Input [[x]]pki
,

sdi1, and key SK2, output x.
Note that for ciphertexts [[x1]]pki and [[x2]]pki under the

same key, the following properties are existed: 1) additive
homomorphism: [[x1]]pki · [[x2]]pki = [[x1 + x2]]pki ; 2) scalar-
multiplicative homomorphism: ([[x1]]pki)

N−a = [[−a×x1]]pki ,
where a ∈ ZN is a constant.

B. Secure Integer Computation Protocols

Given DT-PKC encrypted ciphertexts [[x]] and [[y]], we can
conduct the following protocols:

Secure Multiplication Protocol (SMP): SMP securely cal-
culates the homomorphic multiplication and outputs [[x × y]],
denoted as [[x × y]] ← SMP([[x]], [[y]]). Specifically, if x = y,
[[x2]]← SMP([[x]]).

Secure Maximum Selection Protocol (SMaxn): SMaxn

securely calculates the maximum in n encrypted samples,
denoted as [[xmax]]← SMaxn([[x1]], · · · , [[xn]]).

We refer the interested readers to [19] for a detailed de-
scription of the SMP protocol and [22] for SMaxn protocol.

C. Differential Privacy

In Omega, we introduce difference privacy to protect the
distance of gradients which is used to achieve the robust
defending for Byzantine attack. Mp is conducted as the
random sanitized algorithm. Thus, it is difficult for the task
node to recover other nodes’ gradients.

Definition 1 (differential privacy): Algorithm Mp is ϵ-
differential privacy if for any subset of outputs S:

P(Mp(D) ∈ S) ≤ eϵ × P(Mp(D′) ∈ S),

for any adjacent datasets D and D′, where Mp(D) and
Mp(D) are the outputs of the algorithm for inputs D and D′

respectively, P is the randomness of the noise in the algorithm.

349

Fig. 1: System model of Omega

To measure the maximum change in Mp resulted by a
single data point, we introduce the L2-sensitivity:

Definition 2 (L2-sensitivity): For algorithm Mp, the L2-
sensitivity is defended as follows:

S(Mp)← max
D,D′,∥D−D′∥1=1

∥∥Mp(D)−Mp(D′)
∥∥
2

where D and D′ are adjacent datasets, S(Mp) is the maximum
difference in the L2 norm between the outputs of Mp.

IV. SYSTEM OVERVIEW OF OMEGA

A. System Model

As shown in Fig. 1, our proposed Omega system comprises
three parts: Key Generation Center (KGC), Central Server
(CS), and several Task Nodes (TN).

• KGC is an indispensable entity that generates and dis-
tributes all the public and private keys in the system. It
is trusted by all parts.

• CS manages the global model parameters and supplies
some computational resources to update the parameters.
After training, CS releases the trained model to task
nodes. CS owns the partial strong private key SK1 and
all task nodes’ union public key pkΣ.

• TN owns its local training data and achieves the collabo-
rative learning with the help of CS. To protect the privacy,
all task nodes have different public-private key pairs, the
same union public key pkΣ

1, and another partial strong
private key SK2.

While transmitting the information through the network,
we introduce the secure socket layer (SSL) or transport layer
security (TLS) to secure all communication channels. The
SSL/TLS protocol aims primarily to ensure the data integrity
and authenticity between two communication entities.

B. Threat Model

In Omega, we consider KGC is trusted by all entities. It
generates all the public-private keys for the system. We also
consider CS and most of TNs are honest-but-curious (non-
colluding) parties. Although CS and these curious TNs strictly
follow the protocols, they are also interested to gather or

1The union public key is constructed will all participants’ public keys
pki(i = 1, · · · , n)

UpdateDistance

Parameter

Updated

Label

Byzantine

Distance

Gradients Central Server (CS)
Gradients

gradients

 Download

labels

 Upload

distance

 Download

gradients

Upload

iT

Task Node

Robust RuleTraining

Data

Local

Model

Local

Fig. 2: High-level Architecture of Omega

learn other parties’ private information during the training
process. In Omega, we consider only a few TNs are Byzantine
attackers. These TNs may contribute malformed messages
and try to compromise the entire system in the worst case.
Thus, we introduce an active adversary A which can decrypt
the challenge CS’s encrypted global parameters and infer
the challenge TNs’ local training data with the following
capabilities:

• A could eavesdrop all communications to obtain the
transmitted information and launch an active attack to
infer and forge the intercepted messages.

• A could compromise CS to guess the plaintext of all
encrypted information and infer TNs’ local training data.

• A could compromise one or more curious TNs, except
for challenge TNs, to obtain access to their decryption
abilities and infer other TNs’ local training data through
the intermediate results.

• A could compromise one or more Byzantine TNs to
construct malformed information to subvert the model
training.

However, the adversary A is not allowed to compromise
CS and TNs concurrently. We remark that such restrictions
are typical in cryptographic protocols [22].

V. CONSTRUCTION OF OMEGA

In this section, we present the details of Omega and the
architecture of Omega is shown in Fig. 2. In each training
epoch, task nodes train the model on their local training data
and upload the parameter gradients to CS to update the global
model. Because all task nodes perform the same training
process, we take task node Ti as an example to train the model
in the following subsections. After receiving the uploaded
gradients, CS aggregates all the gradients as follows and then
uses the aggregated result to update the global model:

G ←
n∑

i=1

gi,

where n is the number of task nodes, gi is the uploaded
gradients from Ti.

350

...

Task Nodes (IoT Devices)

Central Server

(CS)

Key Generation

Center (KGC)

Public-Private

Keys

Public-Private

Keys

Encrypted

Gradients

Traitor

Thus, to achieve the privacy preservation, Ti needs to en-
crypt its generated gradients before uploading to CS. However,
we also consider that a few Byzantine nodes are existed in
the system. So we should design a secure robust aggregation
protocol to ensure the model training normally. In Omega, we
adopt a distance-based robust aggregation rule, such as Multi-
Krum [5], which relies on computing ∥gi − gj∥2 for all i, j
node pairs to defend the Byzantine attack.

Step-I (@Ti): Ti trains its local model on its local training
data and obtains the parameter gradients gi. Before uploading
gi to CS, Ti encrypts gi with the union public key pkΣ and
uploads the ciphertext cgi to CS:

cgi ← Enc(gi, pkΣ) = [[gi]].

Step-II (@CS): At each epoch, CS randomly selects several
task nodes to upload the parameter gradients and updates the
global model based on the robust aggregation protocol. After
receiving the parameter gradients, CS firstly calculates the
square of the pairwise Euclidean distances:

dij ← [[gi]] · [[gj]]N−1 = [[gi − gj]],

ξij ← SMP(dij) = [[(gi − gj)
2]],

where [[gi]] and [[gj]] are the received parameter gradients from
task node Ti and Tj .

Step-III (@CS): When filtering out the Byzantine nodes,
we need to obtain the plaintext of the pairwise distance. Thus,
to resist the inference attack launched by the task nodes, we
introduce the difference privacy to sanitize the ciphertexts of
Euclidean distance. Because we directly perturb the distances,
we choose the maximum value of the pairwise distances as the
sensitivity. Hence, we use the SMaxn protocol to calculate the
maximum ciphertext in calculated distance:

dmax ← SMaxn(ξ11, ξ12, · · · , ξij , · · · , ξnn)

where n is the number of chose task nodes and i, j ∈ [1, n].
Step-IV (@CS): After calculating the sensitivity of dif-

ferential privacy, we generate the sanitized noise based on
the Laplace mechanism. Then, based on the homomorphic
additive property, we perturb the pairwise Euclidean distances
as follows:

ξ′ij ← ξij ·Enc(Lap(
dmax

ϵ
), pkΣ) = [[(gi−gj)2+Lap(

dmax

ϵ
)]],

where Lap(·) is the Laplace noise, dmax is the sensitivity, ϵ
is privacy budget. Then, CS partially decrypts the sanitized
distances:

sdij ← PSD1(ξ′ij , SK1).

After that, CS disturbs the orders of partial decrypted distance
matrix and maps it to another matrix. Then, CS randomly
chooses a task node Tg which is not chosen to upload gradients
and sends the disturbed matrix to Tg.

Step-V (@Tg): After receiving the disturbed matrix, Tg

partially decrypts it with SK2 and obtains the plaintexts of
the square of the pairwise Euclidean distances. Then, Tg feeds
these distances to the distance-based robust aggregation rule

and obtains a weight vector u = {ui}ni=1, we call it Byzantine
labels, which is a vector of binary values and indicates that
the selected nodes’ (ui = 1) gradients will be used to update
the global model. Tg encrypts the Byzantine labels u with the
union public key pkΣ and sends the ciphertext to CS.

Step-VI (@CS): Based on the mapping relationship, CS
recovers the normal orders of Byzantine labels [[u]], represented
as [[u′]] and calculates the products with the received gradients.
Then, CS aggregates the products based on the homomorphic
additive property:

[[G]]←
n∏

i=1

SMP([[gi]], [[u
′
i]]) = [[

n∑
i=1

gi × u′
i]],

where u′
i ∈ u′, [[gi]] is the received parameter gradients from

task node Ti.
Step-VII (@CS): After that, CS updates the model param-

eters based on the aggregated parameter gradients:

[[wz]]← [[wz]] · [[θz]]N−η = [[wz − η × θz]],

where wz is the model parameters, η is the learning rate for
model updating, θz ∈ G. We encrypt the model parameters and
send the ciphertext to CS, because the encryption can resist
the inference attack launched by CS. After updating the model
parameters, CS partially decrypts the parameters and sends the
partially decrypted ciphertexts to Ti.

Step-VIII (@Ti): Ti continues to decrypt the model pa-
rameters with partial strong private key SK2 and obtains the
plaintexts of parameters. Then, Ti performs the model training
in the next iteration.

We summarize the secure Byzantine-robust mechanism in
Algorithm 1.

VI. THEORETICAL ANALYSIS

In this paper, we adopt a security model that is usually
used to prove the security of multi-party protocols [23] [24]
to prove the privacy preservation of the model training in
Omega. Considering two parties: CS and Ti, we conduct
two simulators (SCS , STi

, STg
) against two types of attackers

(ACS ,ATi ,ATg) that corrupt CS, Ti, and Tg respectively.
Theorem 1: The aggregation of gradients in Omega is secure

against the adversary A defined in the threat model.
Proof: At the beginning of gradient aggregation, Ti

encrypts the gradients with DT-PKC and sends the ciphertext
to CS. Thus, based on the security of DT-PKC, ACS cannot
infer any private information from Ti’s gradients. To resist
the Byzantine attack, CS calculates the square of the pairwise
Euclidean distances based on the SMP protocol and the system
does not reveal the plaintext to CS. Before calculating the
Byzantine labels, CS perturbs the distances and reveals the
differentially private distances to Tg . Hence, ACS and ATg

also cannot distinguish the real and the ideal executions in
this phase. After obtaining the Byzantine labels, Tg encrypts
the labels and sends the ciphertexts to CS. Without the partial
strong private key SK2, CS cannot decrypt the encrypted
labels. Then, CS aggregates the parameter gradients based on

351

Authorized licensed use limited to: Tsinghua University. Downloaded on March 08,2021 at 09:15:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Secure Byzantine-Robust Model training
Data: Training datasets Di and sensitive property p.
Result: Participant Ti’s personalized model.

1 (@Ti): encrypt the calculated gradients and send the
results to CS;

2 (@CS): calculate the square of the pairwise Euclidean
distances:

ξij ← [[(gi − gj)
2]];

3 (@CS): calculate the differential privacy dmax and
generate the Laplace noise;

4 (@CS): perturb the distances with differentially private
noise:

ξ′ij ← [[(gi − gj)
2 + Lap(

dmax

ϵ
)]];

5 (@CS): partially decrypt the sanitized distances and send
the results to Tg;

6 (@Tg): partially decrypt sdij , feed these distances to the
distance-based robust aggregation rule, and obtain u;

7 (@CS): aggregate the parameter gradients based on the
Byzantine labels:

[[G]]← [[

n∑
i=1

gi × u′
i]];

8 (@CS): update model parameters based on the
homomorphic additive property:

[[wz]]← [[wz − η × θz]];

9 (@Ti): train the model on the updated model parameters.

the SMP protocol and updates the model parameters based on
the homomorphic property. The views of ACS in the real and
the ideal executions are also indistinguishable in this process.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate Omega over a medical dataset,
ADNI, which was collected by the Alzheimers Disease Neu-
roimaging Initiative. ADNI researchers collect several types
of data, including clinical, genetic, MRI image, PET image,
biospecimen, from study volunteers throughout their partic-
ipation in the study, using a standard set of protocols and
procedures to eliminate inconsistencies. There are a total of
79 tasks in ADNI. To evaluate Omega, we just select 20 tasks’
datasets as our training data. Thus, we have 20 task nodes in
our system. We conduct the experiments over a machine with
a 2.6 GHz 32-core processor and 128 GB RAM.

We mainly evaluate the efficiency and model training accu-
racy of Omega in this section. When discussing the efficiency,
we focus on the running time of three stages, including en-
crypting the gradients (@Ti), calculating the Byzantine labels
(@Tg), and updating the global model parameters (@CS), by
varying the number of task nodes. It should be noted that all

1 5 10 15 20
0

500

1000

1500

2000

2500

3000

The number of task nodes

R
un

ni
ng

 ti
m

e(
@

T i(m
s)

, @
T g(m

s)
)

0

1

2

3

4

5

6x 106

R
un

ni
ng

 T
im

e
of

 C
S

(m
s)

time of Ti
time of Tg
time of CS

Fig. 3: Efficiency evaluation of Omega

the reported time is counted over 100 iterations and averaged
over 10 runs.

The simulation results are shown in Fig. 3. By varying the
number of task nodes, CS takes more time to achieve the
global model updating. As the number of task nodes increases,
CS needs to aggregate more uploaded gradients and calculates
the products between gradients and Byzantine labels. Thus, CS
spends more time on updating the model parameters. We also
find that the calculating time of Byzantine labels by Tg also
increases. The reason for this is that Tg spends more time
to filter the Byzantine attackers and encrypts more Byzantine
labels to send to CS. So Tg also spends more time with the
increasing of task nodes. However, the encrypting time spent
by Ti is stable. Although the number of task nodes increases,
the task nodes do not interfere with each other. Thus, the
increasing of task nodes number does not have any influence
on Ti’s encrypting time for parameter gradients.

While evaluating the model training accuracy, we use the
classification error rate to estimate the trained model accuracy.
The simulation results are shown in Fig. 4. We respectively
choose 5, 10, 15 task nodes to train the model. In Fig. 4, we
find that the classification error decreases with the number
of task nodes, that is, more task nodes train a more accurate
model. As the training progresses, each task node uploads the
calculated gradients to central server to achieve the collabo-
rative learning. So each task node benefits from the shared
knowledge trained by other tasks and the trained model will
be more accurate. Although there are one or more Byzantine
participants in the task nodes, we find that Omega can still
train an accurate model.

VIII. CONCLUSION

In this paper, we proposed a novel protocol, namely Omega,
to address the grand challenges in secure Byzantine-robust
collaborative learning. Specifically, we considered that all
task nodes (IoT devices) train a collaborative model without
sharing their local training data and a few task nodes are
Byzantine attackers. These attackers might launch the active
attack and tried to compromise the entire system. Thus, based

352

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

Task 1
Task 2
Task 3
Task 4
Task 5

(a) Number of task node n = 5

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

Task 1
Task 2
Task 3
Task 4
Task 5

(b) Number of task node n = 10

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

Task 1
Task 2
Task 3
Task 4
Task 5

(c) Number of task node n = 15

Fig. 4: Classification error rate for different task nodes

on the homomorphic encryption, we design a robust gradient
aggregation protocol and combined an existed distance-based
Byzantine-robust rule to achieve the secure Byzantine-robust
collaborative machine learning. Moreover, we evaluated the
effectiveness and performance of Omega and the results jus-
tified that Omega was effective and efficient. As part of our
future work, we will consider the reputation of task nodes and
design a reputation-based mechanism to resist the Byzantine
attack.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China (Grant Nos. 61902290,
61902291, 61672413, 61872283),Key Research and Devel-
opment Program of Shaanxi(Grant Nos. 2020ZDLGY09-06,
2019ZDLGY12-04), Natural Science Foundation of Shaanxi
Province (Grant Nos. 2019JM-109, 2019JM-425), Key Lab
of Information Network Security, Ministry of Public Security
(Grant No. C19604), Scientific Research Program Funded
by Shaanxi Provincial Education Department (Grant No.
20JY016), Fundamental Research Funds for the Central U-
niversities (Grant Nos. JB191508, JB191507).

REFERENCES

[1] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1310–1321.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS, FL, USA, vol. 54, 2017, pp. 1273–
1282.

[3] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 308–318.

[4] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proceedings
of IEEE Symposium on Security and Privacy, San Francisco, CA, USA.
IEEE, 2019, pp. 691–706.

[5] P. Blanchard, R. Guerraoui, J. Stainer et al., “Machine learning with
adversaries: Byzantine tolerant gradient descent,” in Advances in Neural
Information Processing Systems, 2017, pp. 119–129.

[6] L. He, S. P. Karimireddy, and M. Jaggi, “Secure byzantine-robust
machine learning,” arXiv preprint arXiv:2006.04747, 2020.

[7] X. Ma, J. Ma, H. Li, Q. Jiang, and S. Gao, “Armor: A trust-based
privacy-preserving framework for decentralized friend recommenda-
tion in online social networks,” Future Generation Computer Systems,
vol. 79, pp. 82–94, 2018.

[8] D. Wu, S. Si, S. Wu, and R. Wang, “Dynamic trust relationships aware
data privacy protection in mobile crowd-sensing,” IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 2958–2970, 2018.

[9] K. Gu, L. Wang, and B. Yin, “Social community detection and message
propagation scheme based on personal willingness in social network,”
Soft Computing, vol. 23, no. 15, pp. 6267–6285, 2019.

[10] X. Ma, H. Li, J. Ma, Q. Jiang, S. Gao, N. Xi, and D. Lu, “Applet: a
privacy-preserving framework for location-aware recommender system,”
Science China Information Sciences, vol. 60, no. 9, p. 092101, 2017.

[11] S. Gao, J. Ma, W. Shi, G. Zhan, and C. Sun, “Trpf: A trajectory privacy-
preserving framework for participatory sensing,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 6, pp. 874–887, 2013.

[12] Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K. R. Choo, “Unified
biometric privacy preserving three-factor authentication and key agree-
ment for cloud-assisted autonomous vehicles,” IEEE Transactions on
Vehicular Technology, 2020.

[13] Q. Jiang, Z. Chen, J. Ma, X. Ma, J. Shen, and D. Wu, “Optimized
fuzzy commitment based key agreement protocol for wireless body area
network,” IEEE Transactions on Emerging Topics in Computing, 2019.

[14] X. Guo, H. Lin, Z. Li, and M. Peng, “Deep reinforcement learning based
qos-aware secure routing for sdn-iot,” IEEE Internet of Things Journal,
2019.

[15] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” arXiv preprint arXiv:2004.02229, 2020.

[16] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy, 2017, pp. 19–38.

[17] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and veri-
fiable federated learning,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 911–926, 2019.

[18] P. Li, J. Li, Z. Huang, T. Li, C. Gao, S. Yiu, and K. Chen, “Multi-key
privacy-preserving deep learning in cloud computing,” Future Genera-
tion Computer Systems, vol. 74, pp. 76–85, 2017.

[19] X. Ma, J. Ma, H. Li, Q. Jiang, and S. Gao, “Pdlm: Privacy-preserving
deep learning model on cloud with multiple keys,” IEEE Transactions
on Services Computing, 2018.

[20] L. Xie, I. M. Baytas, K. Lin, and J. Zhou, “Privacy-preserving distributed
multi-task learning with asynchronous updates,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2017, pp. 1195–1204.

[21] P. Fenner and E. O. Pyzer-Knapp, “Privacy-preserving gaussian process
regression–a modular approach to the application of homomorphic
encryption,” arXiv preprint arXiv:2001.10893, 2020.

[22] X. Liu, R. H. Deng, K.-K. R. Choo, and J. Weng, “An efficient privacy-
preserving outsourced calculation toolkit with multiple keys,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 11,
pp. 2401–2414, 2016.

353

[23] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in Proceedings of the 22nd Annual
Network and Distributed System Security Symposium, 2015, pp. 1–14.

[24] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

354

