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Abstract—Deep learning has aroused a lot of attention and has been used successfully in many domains, such as accurate image

recognition and medical diagnosis. Generally, the training of models requires large, representative datasets, which may be collected

from a large number of users and contain sensitive information (e.g., users’ photos and medical information). The collected data would

be stored and computed by service providers (SPs) or delegated to an untrusted cloud. The users can neither control how it will be

used, nor realize what will be learned from it, which make the privacy issues prominent and severe. To solve the privacy issues, one of

the most popular approaches is to encrypt users’ data with their public keys. However, this technique inevitably leads to another

challenge that how to train the model based on multi-key encrypted data. In this paper, we propose a novel privacy-preserving deep

learning model, namely PDLM, to apply deep learning over the encrypted data under multiple keys. In PDLM, lots of users contribute

their encrypted data to SP to learn a specific model. We adopt an effective privacy-preserving calculation toolkit to achieve the training

process based on stochastic gradient descent (SGD) in a privacy-preserving manner. We also prove that our PDLM can achieve users’

privacy preservation and analyze the efficiency of PDLM in theory. Finally, we conduct an experiment to evaluate PDLM over two

real-world datasets and empirical results demonstrate that our PDLM can effectively and efficiently train the model in a

privacy-preserving way.

Index Terms—Privacy preservation, deep learning, cryptography, multiple keys
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1 INTRODUCTION

RECENT advances in deep learning has lead to impressive
successes in a wide range of applications, such as image

recognition, medical diagnosis, and language translation.
These advances are partly enabled by the training model
with the availability of large and representative datasets [1],
which are usually used to discover the hidden valuable
information. Based on the accurate training models, service
providers (SPs) can provide many new services and appli-
cations, including accurate speech recognition [2] and image
recognition that outperforms humans [3].

Although the training datasets play an important role in
deep learning, the reveal of them would present some seri-
ous privacy issues. First, SPs who collect the data keep it for-
ever, and the users can neither control how it will be used,
nor realize what will be learned form it. Then, the collected
data, such as texts, voices, and images, may also contain
some other captured sensitive information: the voices of
other people speaking, surrounding noises [4], faces, and
computer screens, etc. What’s worse, with the volume
expansion of the collected data, SP will take more costs to
store and compute them. Thus, SP usually migrate them to
cloud platforms, which are untrusted though, to reduce the
overhead of computational resources, but that will make

the privacy issues more prominent and urgent. Because the
collected data contains some privacy information, such as
images and locations, the cloud can easily track users
directly or release their images to other advertisers [5]. As a
result, users would be afraid that their sensitive information
might be leaked and refuse to contribute it.

However, as we all know that the increase and diversity
of training data will make the deep learning models bet-
ter [6]. Because the data from a small number of users may
be very homogeneous, SP may train an overfitted model
and get inaccurate results when use it on other inputs. In
this case, privacy restrictions would be a huge barrier for
deep learning. One way to achieve the security and privacy
of the training datasets is to encrypt them with different
keys (e.g., each user owns an unique key) and SP uses these
multi-key encrypted datasets to train the model. However,
achieving secure training over the encrypted data under
multiple keys without leaking the privacy of individuals
remains a hard problem.

In this paper, to address the aforementioned challenge,
we propose a Privacy-preserving Deep Learning model on
cloud with Multiple keys (PDLM). In PDLM, we utilize a
public-key cryptosystem with distributed two trapdoors [7]
to protect the privacy of the training data and achieve the
learning process in a privacy-preserving manner. After that,
any sensitive information about the training data will not be
revealed and the trained model, including intermediate
results during training process, cannot be obtained by other
parties than SP. What’s more, while achieving the security
goals, we also need to obtain an accurate deep learning
model with higher efficiency. The main contributions of this
paper are as follows:
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� We design a novel mechanism, namely PDLM,
which allows SP to migrate most computing to the
cloud to train a deep learning model without leaking
any privacy.

� To reduce the overhead, SP will send the training
datasets which are encrypted with users’ multiple
keys to the untrusted cloud. Then, our PDLM trains
the model based on stochastic gradient descent
(SGD) in cloud and performs the feed-forward and
back-propagation procedure based on an efficient
privacy-preserving calculation toolkit. In this way,
the storage and computational overhead at SP is
minimized while the training data is not leaked to SP
and the untrusted cloud.

� While receiving the multi-key encrypted datasets,
the cloud server transforms these training datasets
into encryptions under the product of all involved
public keys. After that, with these transformed
ciphertexts (under the same key), we can run the tra-
ditional arithmetic operations to learn the model
parameters in the privacy-preserving manner.

� We conduct the analysis of PDLM in both theory and
practice. Both theoretical analysis and experimental
results over a real-world dataset show that PDLM
can train the deep learning model efficiently and
effectively.

The rest of this paper is organized as follows. Section 2
gives some related work. In Section 3, we present the system
overview and problem formulation, followed by the details
of PDLM in Section 4. Section 5 presents the theoretical anal-
ysis of privacy and efficiency. In Section 6, we empirically
test the accuracy of the trained model and the computa-
tional costs of PDLM. Finally, we conclude this paper in
Section 7.

2 RELATED WORK

In recent years, privacy preservation has been gained sig-
nificant interest. A number of approaches have been pro-
posed to address location privacy [8], [9], [10], [11],
identity privacy [12], [13], and social privacy in social net-
work [14], [15], [16]. Simultaneously, there are many exist-
ing works which have been proposed for the privacy
preservation in data mining and knowledge discovery.
Based on the privacy-preserving mechanism, we divide
them into two categories: cryptographic mechanism and
data perturbation mechanism. In the former one, users
usually encrypt their data to prevent the disclosure of pri-
vacy, which was proposed by Lindell and Pinkas [17].
Then, in the latter mechanism, the private data usually is
preserved by adding sanitized noise, which was proposed
by Agrawal and Srikant [18].

2.1 Cryptographic Mechanism

Based on the cryptographic mechanism, secure multi-party
computation (SMC) which can protect the intermediate
results when multiple parties perform the learning has been
widely used in machine learning, such as learning linear
regression functions [19], decision trees [17], Naive Bayes
classifiers [20], and so on. To protect the privacy in rein-
forcement learning (RL), Miyajima et al. [21] proposed

learning methods with SMC for Q-learning which is one of
the typical methods for RL. Mohassel and Zhang [22] also
presented new and efficient protocols based on secure two-
party computation to protect the privacy in machine learn-
ing for linear regression, logistic regression and neural net-
work training. Their protocols supported secure arithmetic
operations on shared decimal numbers and non-linear func-
tions such as sigmoid and softmax. Based on additively
homomorphic encryption, Wang et al. [23] proposed a novel
privacy-preserving scheme for canonical correlation analy-
sis (CCA) and encrypted the private data by randomly split-
ting numerical, formalize CCA problem and then reduce it
to a symmetric eigenvalue problem. To overcome the high
computational cost of homomorphic encryption in high-
dimensional classifiers, Yonetani et al. [24] proposed their
privacy-preserving mechanism based on doubly homomor-
phic encryption which supported multi-party secure scalar
product. However, earlier homomorphic encryption
schemes only support single operation—either addition or
multiplication. Zhang et al. [25] and Yuan et al. [26] pro-
posed two mechanisms based on BGV fully homomorphic
encryption and doubly homomorphic encryption to encrypt
the private data respectively and employed cloud servers to
perform the high-order back-propagation algorithm on the
encrypted data efficiently for deep computation model
training. Considering the mechanism in [6] that local data
information may be leaked to an honest-but-curious server,
Phong et al. [27] fixed that by building an enhanced system
based on additively homomorphic encryption. Hesamifard
et al. [28] also provided a theoretical foundation for imple-
menting deep neural network algorithms in encrypted
domain and developed techniques to adopt neural net-
works within practical limitations of current homomorphic
encryption schemes. Although the above works protect the
private data well, they did not consider the condition which
the private data is encrypted by multiple keys from differ-
ent data owners. As a directly related work, Li et al. [29]
proposed two schemes based on multi-key fully homomor-
phic encryption (MK-FHE), which were able to preserve the
privacy of sensitive data, intermediate results as well as the
training model. But these fully homomorphic encryption
(FHE) schemes usually have a low efficiency and we adopt
a more efficient privacy-preserving calculation toolkit with
multiple keys to achieve the same goal.

2.2 Data Perturbation Mechanism

As the mainstream of data perturbation mechanism, differ-
ential privacy [30] has also been widely used in privacy-pre-
serving deep learning. Zhang and Zhu [31] focused on a
class of regularized empirical risk minimization machine
learning problems, and developed two methods to provide
differential privacy to distributed learning algorithms over
a network. Phan et al. [32] also proposed a novel mechanism
to preserve differential privacy in deep neural networks,
which privacy budget consumption was totally indepen-
dent of the number of training steps and the noise could be
injected into features based on the contribution of each to
the output. To address the privacy preservation in distrib-
uted multi-task learning (MTL), Xie et al. [33] proposed an
asynchronous proximal gradient algorithm to solve a gen-
eral class of MTL formulations, which was robust against
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network delays and provided a guaranteed differential pri-
vacy through carefully designed perturbation. Shokri and
Shmatikov [6] proposed a system which let data owners
train independently on their own datasets and selectively
shared small subsets of their models’ key parameters which
are also injected into noises. Abadi et al. [1] and Hamm
et al. [34] considered that the training data were crowd-
sourced and proposed some new techniques for learning
problems with differential privacy guaranteed. Focusing on
the privacy-preserving feature selection in data mining, Li
et al. [35] proposed a local learning-based feature weighting
framework which use objective perturbation and output
perturbation strategies to produce feature selection algo-
rithms with privacy preservation. However, the above data
perturbation mechanisms are inherently flawed. All of them
injected noise into training data or model parameters and
that would result in a less accurate model.

3 SYSTEM OVERVIEW AND PROBLEM

FORMULATION

As discussed above, more diverse data can train a better
learning model. However, directly collecting data from
users and training the deep learning model over cloud may
invoke the unexpected privacy issues, which is a key hinder
for the data owners to contribute training data. To this end,
we design PDLM based on an efficient privacy-preserving
calculation toolkit with multiple keys [7] to help service pro-
vider train a global deep learning model over semi-honest
cloud environment. In this section, we first present some
preliminaries that serve as the basis of PDLM, and then
present the system model, threat model, and security model
for PDLM. For your convenience, the notations used in the
sequel are listed in Table 1.

3.1 Preliminaries

3.1.1 Deep Learning

Deep learning can be seen as amulti-layer neural network. The
input layer is composed of the raw features extracted from the
input data. Then, there are also several hidden layers, which
extractmore abstract features based on the inputs. The outputs
of last layer correspond to abstract answers produced by the
model. The neurons are connected via weights that determine
the contribution of each input signal. In a typical multi-layer
network, each neuron receives the output of the neuron in the

previous layer plus a bias signal from a special neuron. In a
deep learning structure of neural network, there can be multi-
ply layers eachwith thousands of neurons.

Each neuron node (except the bias node) is associated
with an activation function f . Examples of f in deep learning

are fðxÞ ¼ maxf0; xg (rectified linear), fðxÞ ¼ ex�e�x

exþe�x (hyper-

bolic tangent), and fðxÞ ¼ ð1þ e�xÞ�1 (sigmoid). The outputs

at layer lþ 1, denoted as aðlþ1Þ, are computed as

aðlþ1Þ ¼ fðW ðlÞaðlÞ þ bðlÞÞ, in which ðW ðlÞ; bðlÞÞ are the parame-
ters, including weights and bias, connecting layers l and
lþ 1 and aðlÞ are the outputs at layer l. So the features that are
extracted at each layer are determined by the activation func-
tion f , weight variables W , and bias terms b. One of the pri-
mary goals in deep learning is to automatically learn the
values of parameters (weights and bias) from training data
tomaximize the objective of the neural network (e.g., classifi-
cation accuracy).

However, learning the parameters is always a nonlinear
optimization problem and some variants of gradient
descent [36] are usually used to solve this problem. Typically,
if learning on a large dataset, stochastic gradient descent is a
good choice to solve the optimization problem, which com-
putes the gradient over a mini-batch dataset (i.e., a subset of
the whole dataset) [37]. During the training process, the
parameters are usually learned through feed-forward and
back-propagation procedures. Given the input data, feed for-
ward can compute the outputs of the network and then
obtain the error between the outputs and the true values.
After that, this error will be propagated back through the net-
work using back propagation and the contribution of each
neuron to the error will also be computed. Finally, we can
compute the gradients of each parameter from neurons’ acti-
vation values and their contributions to error. Algorithms 1
and 2 describe the processes of feed forward and back propa-
gation during the learning, in which we assume that the net-
work owns 1 hidden layer, input layer owns n1 nodes,
hidden layer owns n2 nodes, output layer owns n3 nodes,
andL samples are randomly extracted for SGD each time.

Algorithm 1. Process of Feed Forward During Learning

Input: L samples randomly extracted from input data
fXð1Þ; Y g, initialized parameters fW ð1Þ;W ð2Þg, activation
function fðxÞ.

Output: the error between outputs and true values.
1: for sample h ¼ 1; . . . ; L do
2: for k ¼ 1; 2 do
3: for j ¼ 1; . . . ; nkþ1 do

4: v
ðkþ1Þ
hj ¼Pnk

i¼1 x
ðkÞ
hi � wðkÞ

ij þ b
ðkÞ
j ;

5: x
ðkþ1Þ
hj ¼ fðvðkþ1Þ

hj Þ;
6: end for
7: end for
8: Y ¼ Xð3Þ;
9: end for
10: error ¼ 1

2L

PL
h¼1

Pn3
j¼1 ðyhj � yhjÞ2;

3.1.2 Distributed Two Trapdoors Public-Key

Cryptosystem

In order to realize PDLM, the public-key cryptosystem with
distributed two trapdoors (DT-PKC) proposed by Liu

TABLE 1
Definitions and Notations in PDLM

Symbol Definition

pki data owner i0s public key
ski data owner i0sweak private key
pkS the union public key of data owners
PDSKi

the partial decryption algorithm with partial
strong private key SKi; i 2 f1; 2g

�; �1; �2 strong private key and partial strong private key
½XðkÞ�pkh ; ½XðkÞ�pkS the inputs of kth layer which are encrypted with

pkh or pkS
½W ðkÞ�pkS ; ½bðkÞ�pkS the encrypted parameters in kth layer

½Y �pkS ; ½Y �pkS the encrypted model outputs and true values
t the error threshold in back-propagation deep

learning

MA ET AL.: PDLM: PRIVACY-PRESERVING DEEP LEARNING MODEL ON CLOUDWITH MULTIPLE KEYS 1253



et al. [7] could be a suitable solution for multi-key manage-
ment. Although there are many other mechanisms [38],
[39] that support multi-key outsourcing computation, they
either do not support complex computations or can not
decrypt the trained model for SP. Based on Paillier [40] and
Bresson et al.’s cryptosystem [41], the DT-PKC works as
follows:

KeyGen. Given a security parameter k and two large prime
numbers p; q, where jpj ¼ jqj ¼ k. Because of the property of
strong primes [7], [41], two strong primes p0; q0, s.t., p0 ¼ p�1

2
and q0 ¼ q�1

2 , can be obtained. Then, compute � ¼ lcmðp� 1;
q � 1Þ ¼ 2p0q0 and N ¼ pq. After that, we define a function
LðxÞ ¼ x�1

N and select a generator g of order 2p0q0. Randomly
choose ui 2 ½1;N=4� and calculate hi ¼ gui mod N2 for user i.
So user i’s public key is pki ¼ fN;g; hig and weak private key
is ski ¼ ui. The strong key for system isSK ¼ �.

Algorithm 2. Process of Back Propagation During
Learning

Input: L samples randomly extracted from input data fXð1Þ; Y g,
learning rate h, initialized parameters fW ð1Þ;W ð2Þ; bð1Þ; bð2Þg,
activation function fðxÞ, maximum iteration f, error thresh-
old t, and computed error error in feed forward.

Output: the values of parameters fW ð1Þ;W ð2Þ; bð1Þ; bð2Þg.
1: if error > t then
2: for sample h ¼ 1; . . . ; L do
3: for i ¼ 1; . . . ; n3 do

4: d
ð3Þ
hi ¼ ðyhi � yhiÞ � f 0ðvð3Þhi Þ;

5: Db
ð2Þ
i ¼ Db

ð2Þ
i þ d

ð3Þ
hi ;

6: end for
7: for i ¼ 1; . . . ; n2 do

8: d
ð2Þ
hi ¼ f 0ðvð2Þhi Þ �

Pn3
j¼1ðdð3Þhj � wð2Þ

ij Þ;
9: Db

ð1Þ
i ¼ Db

ð1Þ
i þ d

ð2Þ
hi ;

10: end for
11: end for
12: for k ¼ 1; 2 do
13: for j ¼ 1; . . . ; nkþ1 do
14: for i ¼ 1; . . . ; nk do
15: for h ¼ 1; . . . ; L do

16: Dw
ðkÞ
ij ¼ Dw

ðkÞ
ij þ x

ðkÞ
hi � dðkþ1Þ

hj ;

17: end for

18: w
ðkÞ
ij ¼ w

ðkÞ
ij � h � 1L � DwðkÞ

ij ;

19: end for

20: b
ðkÞ
j ¼ b

ðkÞ
j � h � 1L � DbðkÞj ;

21: end for
22: end for
23: else
24: break;
25: end if

Encryption (Enc). Select a random number r 2 ½1; N=4�, the
ciphertext under pki for plaintext m 2 ZN can be generated
as ½m�pki ¼ fTi;1; Ti;2g, where Ti;1 ¼ gruið1þmNÞ mod N2

and Ti;2 ¼ gr mod N2.
Decryption with Weak Private Key (WDec).Given ciphertext

½m�pki , we can decrypt it with weak private key as following:

m ¼ L
Ti;1

T
ui
i;2

mod N2

 !
:

Decryption with Strong Private Key (SDec). Given any
ciphertext ½m�pki , we can decrypt it with strong private key
as following:

m ¼ LðT�
i;1 mod N2Þ��1 mod N ¼ Lð1þmN�Þ��1 mod N:

To achieve the DT-PKC, we can randomly split the strong
private key into two parts which are denoted as SKj ¼
�jðj ¼ 1; 2Þ, s.t., �1 þ �2 � 0 mod � and �1 þ �2 � 1 mod N2

hold at the same time.
Partial Decryption with SK1 (PSDec1). While receiving

½m�pki ¼ fTi;1; Ti;2g, we can partially decrypt it using algo-
rithm PDSK1

ð�Þwith SK1 ¼ �1 as following:

STi1 ¼ ðTi;1Þ�1 ¼ grui�1ð1þmN�1Þ mod N2:

Partial Decryption with SK2 (PSDec2). While receiving
STi1 and ½m�pki , we can obtain plaintext m using algorithm
PDSK2

ð�; �Þ as following:

STi2 ¼ ðTi;1Þ�2 ¼ grui�2ð1þmN�2Þ modN2

LðSTi1 � STi2Þ ¼ Lðgrui�1ð1þmN�1Þ � grui�2ð1þmN�2Þ mod N2Þ
¼ mð�1 þ �2Þ mod N2

¼ m;

where �1 þ �2 � 0 mod �, g� � 1 mod N2, and �1þ�2 �
1 mod N2.

Note that for two given ciphertexts ½m1�pki and ½m2�pki
under the same public key pki, they have the following
properties:

1) the product of two ciphertexts will decrypt to
the sum of their corresponding plaintexts: ½m1�pki �
½m2�pki ¼ fT 1

i;1 � T 2
i;1; T

1
i;2 � T 2

i;2g ¼ fguiðr1þr2Þð1þ ðm1 þ
m2ÞNÞ mod N2; gr1þr2 mod N2g ¼ ½m1 þm2�pki .

2) given constant number a 2 ZN and ciphertext ½m1�pki ,
it has ð½m1�pkiÞ

N�a ¼ fgrðN�aÞuið1þ ðN � aÞm1NÞ mod N2;

grðN�aÞ mod N2g ¼ fgrðN�aÞuið1� a �m1NÞ mod N2;

grðN�aÞ mod N2g ¼ ½�a �m1�pki .

3.2 System Model

In a deep learning system, each data owner contributes his/
her sensitive local training data. To guarantee the privacy of
such training data during the learning process, all the pri-
vacy information (i.e., local training data, intermediate
results, model’s outputs, etc.) should be kept and computed
in ciphertext. In this manner, we can derive the basic entities
for our privacy-preserving deep learning system as follows
(see in Fig. 1).

1) Key Generation Center (KGC). KGC is a indispensable
entity which distribute and manage all the public
and private keys in system. It is trusted by all
entities.

2) Data Owners (DOs). DOs request service from service
provider and contribute local data for service pro-
vider to train the deep learning model. Before
uploading the training data, DOs will encrypt the
data with their corresponding public keys. We
assume that all DOs’ datasets have similar content
and distribution.
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3) Service Provider (SP). As a service provider, SP is
responsible for collecting data from DOs and train-
ing model to provide new service. However, SP usu-
ally possesses limited storage and computational
resources, and thus it sends the encrypted training
data to cloud for storage and computation. Specially,
SP owns the partial strong private key SK2 ¼ �2 and
DOs’ union public key pkS.

1

4) Cloud Platform (CP). CP stores and manages all the
training data in the learning model. In addition, CP
is able to partially decrypt ciphertexts sent by SP and
performs certain calculations on ciphertexts. So CP
owns another partial strong private key SK1 ¼ �1.

3.3 Threat Model

In PDLM, we consider the KGC to be a trusted entity, which
generates the public and private keys for the system. On the
other hand, SP and CP are curious-but-honest (non-colluding)
adversaries, which strictly follow the protocol. But they are
also interested to gather or learn the privacy information
during the training process. Based on that, we introduce an
active adversaryA� in ourmodel. The goal ofA� is to decrypt
the challenge DOs’ original ciphertext and the challenge SP’s
encryptedmodel parameters with the following capabilities:

1) A� could eavesdrop all communications to obtain the
encrypted data and launch an active attack to inter-
cept, tamper, and forge the transmitted messages.

2) A� could compromise CP to guess the plaintext value
of all ciphertexts outsourced from DOs, and all
ciphertexts sent from SP by executing the training
process.

3) A� could compromise SP to guess the plaintext value
of all ciphertexts sent from DOs and CP by executing
the training process.

4) A� could compromise one or more DOs, with the
exception of challenge DOs, to obtain access to their
decryption abilities, and guess all ciphertexts belong-
ing to the challenge DOs.

However, the adversary A� is not allowed to compro-
mise: (1) both CP and SP concurrently, (2) the challenge
DOs. We remark that such restrictions are typical in crypto-
graphic protocols [42], [43].

3.4 Security Model

The security model adopted in this work is similar to that
in [44], [45], [46], which is defined in secure two-party

protocols for non-colluding semi-honest adversaries and
widely used to prove the security of multi-party protocols.
Consider two parties: SP and CP, we construct four simula-
tors (S1

SP , S
1
CP , S

2
SP , S

2
CP ) for two phases against two types of

attackers (ASP , ACP ) that corrupt SP and CP, respectively.
These attackers are deemed as non-colluding and semi-
honest. Due to the length limitation, please refer to [7], [44],
[45], [46] for the general security model definitions.

4 CONSTRUCTION OF PDLM

In this section, we present the details of PDLM based on DT-
PKC. When the system is initialized, each DO registers as a
data owner and KGC will negotiate a one-to-one key with
him. After generating the public and private keys, KGC
uses the negotiatory key to encrypt DO’s private key and
sends the encrypted one to him. Then, the secure socket
layer (SSL) or transport layer security (TLS) protocols are
made use to secure all communications between DOs and
SP, CP and SP. The SSL/TLS protocols aim primarily to
guarantee the data integrity and authenticity between two
communicating entities. Before training the model, SP col-
lects the encrypted training datasets from DOs and then
uploads them to CP. After that, SP will train the model with
the help of CP.

In PDLM, we select the usually used sigmoid function
fðxÞ ¼ ð1þ e�xÞ�1 as the activation function (other activation
functions can also be used after the similar conversion).
Because the DT-PKC does not support the exponentiation
operation required by the sigmoid function, we use Taylor
series to approximate the results based onTaylor theorem [47]
instead of using fully homomorphic encryption or other com-
plex computing protocols, which is defined as follow:

fðxÞ ¼ 1

1þ ex
¼ fð0Þ þ f 0ð0Þxþ f 00ð0Þ

2!
x2

þ f ð3Þð0Þ
3!

x3 þ � � � þ f ðkÞð0Þ
k!

xk þ hkðxÞxk

¼ 1

2
þ x

4
� x3

48
þ oðx4Þ

� 0:5þ 0:25 � x� 0:02 � x3:

According to the property of Taylor series, we can decide
the number of terms in the extending according to our accu-
racy requirement. To simplify the description of privacy-
preserving calculation, we first give the procedure to calcu-
late ½x2�pkS and ½x3�pkS based on DT-PKC while CP owns
ciphertext ½x�pki . Note that the private data and parameters
which are needed to encrypt are integers; therefore, we
restrict the data and parameters to be in the range of ½0;V�,
where jVj < jNj=8. Although some of the data are floats,
we can still calculate the results by the method in [7]. It
should be noted that CP and SP are curious-but-honest and
they are non-colluding adversaries. Based on the double-
trapdoor cryptosystem, they can transform the multi-key
encrypted datasets into the same-key encrypted ciphertexts
and then perform complex arithmetic operations to train
the model parameters.

4.1 Secure Multiplication Protocol (SMP)

Since CP can only partially decrypt the ciphertext ½x�pki
which is encrypted by DO i, it must ask SP for help to

Fig. 1. System framework of PDLM.

1. The union public key is constructed as pkS ¼ ðN; g; hS ¼
g

P
j¼1;...;L

uj Þwhich associates with DO jðj ¼ 1; . . . ; LÞ.
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calculate ½x2�pkS and ½x3�pkS cooperatively. Given ciphertext
½x�pki , we design secure multiplication protocol to calculate

½x2�pkS and ½x3�pkS , which is described as follows:

Step-I(@CP). CP selects a random number rx 2 ZN ,
calculates:

pkSj 6¼i
¼ fN; g; hSj 6¼i

g ¼ fN; g; gSj¼1;...;L;j6¼iujg
½x�pkS ¼ fTi;1 � hSj 6¼i

; Ti;2g
¼ fgrSj¼1;...;Lujð1þmNÞ mod N2; gr mod N2g

x0 ¼ ½x�pki � ½rx�pki ¼ ½xþ rx�pki :

Then, CP calculates x0
1 ¼ PDSK1

ðx0Þ, and sends fx0; x0
1g to

SP.
Step-II(@SP). While receiving the partially decrypted

information, SP calculates as follows:

m1 ¼ ðPDSK2
ðx0; x0

1ÞÞ2 ¼ ðxþ rxÞ2

m2 ¼ ðPDSK2
ðx0; x0

1ÞÞ3 ¼ ðxþ rxÞ3:

After that, SP encrypts fm1;m2gwith DOs’ union public key
pkS and sends the ciphertexts ft1 ¼ ½m1�pkS ; t2 ¼ ½m2�pkSg to
CP.

Step-III(@CP). Once ft1; t2g are received, CP computes

s1 ¼ ð½r2x�pkSÞ
N�1; s2 ¼ ð½x�pkSÞ

N�2rx ; s3 ¼ ðt1ÞN�rx ; s4 ¼ ð½x�pkSÞ
N�r2x ,

and calculates the following to obtain the encrypted x2

and x3:

s1 ¼ ð½r2x�pkSÞ
N�1 ¼ ½�r2x�pkS

s2 ¼ ð½x�pkSÞ
N�2rx ¼ ½�2rxx�pkS

s3 ¼ ðt1ÞN�rx ¼ ½�rx �m1�pkS
s4 ¼ ð½x�pkSÞ

N�r2x ¼ ½�r2x � x�pkS
t3 ¼ t1 � s1 � s2 ¼ ½x2�pkS
t4 ¼ t2 � s3 � s4 � ðt3ÞN�2rx ¼ ½x3�pkS :

While giving different ciphertexts f½x1�pki ; ½x2�pkig which
are encrypted with the same public key, we can also obtain
the encrypted product ½x1 � x2�pkS using the above secure
multiplication protocol.

4.2 Privacy-Preserving Feed Forward

In this phase, CP computes the output of the network and
obtains the error between the outputs and the true values in
a privacy-preserving manner. Since the training data existed
in CP is collected from different DOs, CP has to perform the
calculations of Algorithm 1 on multi-key encrypted cipher-
texts. Specially, CP owns encrypted initialized parameters

f½W ðkÞ�pkS ; ½bðkÞ�pkS ; k 2 f1; 2gg which are encrypted with

DOs’ union public key and multi-key encrypted training
data f½Xð1Þ�pkh ; ½Y �pkh ; h 2 ½1; L�g which we assume that CP

randomly extracts L samples each time and each sample is
encrypted with a different public key.

Step-I(@CP). For ½xðkÞhi �pkh 2 ½XðkÞ�pkh ; ½w
ðkÞ
ij �pkS 2 ½W ðkÞ�pkS ; h 2

½1; L�; i 2 ½1; nk�; j 2 ½1; nkþ1�; k ¼ 1, CP generates three ran-

dom matrixes Rx 2 Z
L�nk
N ;Rw 2 Z

nk�nkþ1
N ;R0 2 Z

L�nk�nkþ1
N and

calculates as follows, rxhi 2 Rx; r
w
ij 2 Rw; r

0
hij 2 R0:

x
0ðkÞ
hi ¼ ½xðkÞ

hi �pkh � ½r
x
hi�pkh ¼ ½xðkÞ

hi þ rxhi�pkh
w

0ðkÞ
ij ¼ ½wðkÞ

ij �pkS � ½rwij�pkS ¼ ½wðkÞ
ij þ rwij�pkS

thij ¼ ½r0hij�pkh � ð½x
ðkÞ
hi �pkhÞ

N�rw
ij ¼ ½r0hij � rwij � xðkÞ

hi �pkh :

Then, CP calculates x00ðkÞhi ¼ PDSK1
ðx0ðkÞhi Þ; w00ðkÞ

ij ¼ PDSK1
ðw0ðkÞ

ij Þ;
t0hij ¼ PDSK1

ðthijÞ and represents the matrixes as fX00ðkÞ;
W 00ðkÞ; T 0g. Finally, CP sends fX00ðkÞ; X0ðkÞ; W 00ðkÞ;W 0ðkÞ; T 0; Tg
to SP.

Step-II(@SP). Using another partial strong private key, SP
calculates as follows, x

00ðkÞ
hi 2 X00ðkÞ; x0ðkÞ

hi 2 X0ðkÞ; w00ðkÞ
ij 2 W 00ðkÞ;

w
0ðkÞ
ij 2 W 0ðkÞ; t0hij 2 T 0; thij 2 T; h 2 ½1; L�; i 2 ½1; nk�; j 2 ½1; nkþ1�;

k ¼ 1:

mx
ðkÞ
hij ¼ PDSK2

ðx00ðkÞ
hi ; x

0ðkÞ
hi Þ � PDSK2

ðw00ðkÞ
ij ; w

0ðkÞ
ij Þ

¼ ðxðkÞ
hi þ rxhiÞðwðkÞ

ij þ rwijÞ
t00hij ¼ ½PDSK2

ðt0hij; thijÞ�pkS ¼ ½r0hij � rwij � xðkÞ
hi �pkS :

SP then encrypts each mx
ðkÞ
hij with union public key of DOs

and represents all the ciphertexts as matrix ½MXðkÞ�pkS . After
that, SP sends matrixes f½MXðkÞ�pkS ; T 00g to CP.

Step-III(@CP). While receiving the ciphertexts from SP,

CP calculates s1 ¼ ð½wðkÞ
ij �pkSÞ

N�rx
hj ; s2 ¼ ð½r0hij�pkSÞ

N�1; s3 ¼
ð½rxhi � rwij�pkSÞ

N�1 and obtains the results as follows,

½mx
ðkÞ
hij�pkS 2 ½MXðkÞ�pkS ; t00hij 2 T 00; rxhi 2 Rx; r

w
ij 2 Rw; r

0
hij 2 R0;

½wðkÞ
ij �pkS 2 ½W ðkÞ�pkS :

cx
ðkÞ
hij ¼ mx

ðkÞ
hij

h i
pkS

� t00hij � s1 � s2 � s3 ¼ x
ðkÞ
hi � wðkÞ

ij

h i
pkS

cv
ðkþ1Þ
hj ¼

Ynk
i¼1

cx
ðkÞ
hij

 !
� b

ðkÞ
j

h i
pkS

¼ v
ðkþ1Þ
hj

h i
pkS

ðvðkþ1Þ
hj Þ3

h i
pkS

¼ SMP cv
ðkþ1Þ
hj

� �

cx
ðkþ1Þ
hj ¼ ½0:5�pkS � v

ðkþ1Þ
hj

� �h i0:25
pkS

� v
ðkþ1Þ
hj

� �3� �N�0:02

pkS

¼ 0:5þ 0:25 v
ðkþ1Þ
hj

� �
� 0:02 v

ðkþ1Þ
hj

� �3� �
pkS

� x
ðkþ1Þ
hj

h i
pkS

:

Specially, SMP(�) is the secure multiplication protocol and
we can obtain the encrypted cube of information by that.
The matrix of calculated results can be represented as
CXðkþ1Þ. When k ¼ 2, the processing procedure is similar
with above calculations, so we do not repeat the description
here again and we can obtain the encrypted output of the
network as ½Y �pkS ¼ CXð3Þ. Then, CP selects two random

matrixes Ra;Rb 2 Z
L�n3
N and calculates the error in the fol-

lowing, ½yhj�pkS 2 ½Y �pkS ; ½yhj�pkh 2 ½Y �pkh ; rahj 2 Ra; r
b
hj 2 Rb; h 2

½1; L�; j 2 ½1; n3�:

cyhj ¼ ½yhj�pkS � ½rahj�pkS ¼ ½yhj þ rahj�pkS
cyhj ¼ ½yhj�pkh � ½r

b
hj�pkh ¼ ½yhj þ rbhj�pkh :

CP also calculates cy0hj ¼ PDSK1
ðcyhjÞ; cy0hj ¼ PDSK1

ðcyhjÞ,
and represents the matrixes as fCY 0

; CY ; CY 0; CY g which
are also sent to SP.
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Step-IV(@SP). Once receiving the information from CP,
SP calculates as follow:

rehj ¼ ½PDSK2
ðcy0hj; cyhjÞ � PDSK2

ðcy0hj; cyhjÞ�pkS
¼ ½yhj � yhj þ rahj � rbhj�pkS :

Then, SP represents the matrix as RE and sends that to CP
for remaining calculations.

Step-V(@CP). After receiving matrix RE, CP will calcu-
late s4 ¼ ½rbhj � rahj�pkS and obtain the error as follows, h 2
½1; L�; j 2 ½1; n3�:

cehj ¼ ½ehj�pkS ¼ rehj � s4 ¼ ½yhj � yhj�pkS
½e2hj�pkS ¼ SMP ðcehjÞ

½error�pkS ¼
YL
h¼1

Yn3
j¼1

½e2hj�pkS

 !1=2L

:

After obtaining the encrypted error, CP will compare it
with the threshold t. And if it is greater than t, CP will per-
form the privacy-preserving back propagation in following
phase.

4.3 Privacy-Preserving Back Propagation

In this phase, CP first securely compares the encrypted error
½error�pkS with error threshold t and then performs the back
propagation of Algorithm 2 in the privacy-preserving
manner.

Step-I(@CP). Given ½error�pkS and error threshold t, CP
encrypts t with union public key and calculates as follows:

ct0 ¼ ð½t�pkSÞ
2 � ½1�pkS ¼ ½2t þ 1�pkS

ce0 ¼ ð½error�pkSÞ
2 ¼ ½2 � error�pkS :

Then, CP flips a coin � randomly. If � ¼ 1, CP calculates
½b�pkS ¼ ct0 � ðce0ÞN�1, else ½b�pkS ¼ ce0 � ðct0ÞN�1. CP also
selects another random number r, s.t., jrj < jNj=4, and cal-
culates ½b0�pkS ¼ ð½b�pkSÞ

r. After that, CP partially decrypts

½b0�pkS as b00 ¼ PDSK1
ð½b0�pkSÞ and sends the result to SP.

Step-II(@SP). Using partial strong private key SK2, SP
decrypts b00 and obtains b0. If jb0j > jNj=2, SP denotes
u0 ¼ 1, else u0 ¼ 0. Then, SP sends u0 to CP.

Step-III(@CP). While receiving u0 from SP, CP computes
as follows:

� If � ¼ 1, u00 ¼ u0, else u00 ¼ 1� u0.
� If u00 ¼ 1, error > t, else error 	 t.
If error > t, CP will continue to calculate in the follow-

ing steps.
Step-IV(@CP). Since fðxÞ ¼ ð1þ e�xÞ�1 and x

ðkþ1Þ
hi ¼

fðvðkþ1Þ
hi Þ; i 2 ½1; nkþ1�; h 2 ½1; L�; k 2 f1; 2g, we can calculate

f 0ðvðkþ1Þ
hi Þ as f 0ðvðkþ1Þ

hi Þ ¼ x
ðkþ1Þ
hi ð1� x

ðkþ1Þ
hi Þ. While giving

cx
ðkþ1Þ
hi 2 CXðkþ1Þ, CP calculates:

cx
0ðkþ1Þ
hi ¼ ½1�pkS � ðcxðkþ1Þ

hi ÞN�1 ¼ ½1� x
ðkþ1Þ
hi �pkS

f
ðkþ1Þ
hi ¼ SMP ðcxðkþ1Þ

hi ; cx
0ðkþ1Þ
hi Þ

¼ ½xðkþ1Þ
hi � ð1� x

ðkþ1Þ
hi Þ�pkS ¼ ½f 0ðvðkþ1Þ

hi Þ�pkS :

Step-V(@CP). When k ¼ 2, CP calculates the ciphertexts
of d

ð3Þ
hi ; h 2 ½1; L�; i 2 ½1; n3� through SMP and obtains the

results as follow:

cd
ð3Þ
hi ¼ SMP ðcehi;fð3Þ

hi Þ
¼ ½ðyhi � yhiÞ � f 0ðvð3Þhi Þ�pkS :

So CP can also calculate the encrypted gradients of bias for
output layer as follow, i 2 ½1; n3�; h 2 ½1; L�:

½Dbð2Þi �pkS ¼ ½Dbð2Þi �pkS � cdð3Þhi

¼ ½Dbð2Þi þ d
ð3Þ
hi �pkS :

Step-VI(@CP). When k ¼ 1, CP calculates the ciphertexts

of d
ð2Þ
hi ; h 2 ½1; L�; i 2 ½1; n2�; j 2 ½1; n3� through SMP and

obtains the results as follows:

zhij ¼ SMP cd
ð3Þ
hj ; ½wð2Þ

ij �pkS
� �

¼ d
ð3Þ
hj � wð2Þ

ij

h i
pkS

cd
ð2Þ
hi ¼ SMP

Yn3
j¼1

zhij;f
ð2Þ
hi

 !

¼ f 0 v
ð2Þ
hi

� �
�
Xn3
j¼1

d
ð3Þ
hj � wð2Þ

ij

� �" #
pkS

:

And the encrypted gradient of bias for hidden layer can also
be calculated as follow, i 2 ½1; n2�; h 2 ½1; L�:

½Dbð1Þi �pkS ¼ ½Dbð1Þi �pkS � cdð2Þhi

¼ ½Dbð1Þi þ d
ð2Þ
hi �pkS :

Step-VII(@CP). Finally, CP calculates the sum of
encrypted gradients of L samples for each parameter weight

w
ðkÞ
ij ; k 2 f1; 2g; i 2 ½1; nk�; j 2 ½1; nkþ1� and then updates the

parameter variables. When k ¼ 1, CP owns ½xð1Þ
hi �pkh and

cd
ð2Þ
hj , uses the similar manner of Step I-III in Section 3.2 to

compute the product of two ciphertexts which are
encrypted with different public keys and obtains the results

as %
ð1Þ
hij ¼ ½xð1Þ

hi � dð2Þhj �pkS . When k ¼ 2, CP uses the SMP proto-

col to compute the product of cx
ð2Þ
hi and cd

ð3Þ
hj and obtains the

results as %
ð2Þ
hij ¼ ½xð2Þ

hi � dð3Þhj �pkS . After that, CP calculates as fol-

lows, k ¼ f1; 2g; i 2 ½1; nk�; j 2 ½1; nkþ1�; h 2 ½1; L�:

½DwðkÞ
ij �pkS ¼ ½DwðkÞ

ij �pkS � %ðkÞhij ¼ ½DwðkÞ
ij þ x

ðkÞ
hi � dðkþ1Þ

hj �
½wðkÞ

ij �pkS ¼ ½wðkÞ
ij �pkS � ð½DwðkÞ

ij �pkSÞ
N�h=L

¼ w
ðkÞ
ij � h

L
� DwðkÞ

ij �pkS ½b
ðkÞ
j

h i
pkS

¼ b
ðkÞ
j � h

L
� DbðkÞj

h i
pkS

:

After a number of iterations in Sections 4.2 and 4.3, we
can obtain the optimal deep learning model. Then, CP sends
the partial decrypted parameters to SP to get the model
parameters.
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5 THEORETICAL ANALYSIS

In this section, we theoretically show that PDLM fulfills the
privacy and efficiency requirements.

5.1 Privacy Preservation

Based on the adopted security model shown in Section 3.4,
we consider a protocol is secure if each party participating
in it can be computed based on its input and output only.
While giving the input and output only, we can simulate
the party’s view which is executed in the protocol. This
implies that the party learns nothing from the execution of
the protocol itself. Additionally, because the SSL/TLS pro-
tocols use an authentication policy to resist data tampering
attacks, the transmitted data can be kept intact between two
communicating entities.

Theorem 1. The learning process in PDLM is secure against the
adversary A� defined in the attack model.

Proof. The proof is given in appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2018.2868750. tu

5.2 Efficiency Analysis

In this section, we study the communication costs and stor-
age overhead in PDLM. At the beginning of feed forward
ðk ¼ 1Þ, CP calculates the products of ½XðkÞ�pkh and ½W ðkÞ�pkh ,
which costs CPOð2L � n1 � n2Þ and SPOð2L � n1 � n2Þ to trans-
mit the encrypted data. CP then computes f½ðvkþ1

hi Þ2�pkS ;½ðvkþ1
hi Þ3�pkSg using SMP protocol and spends Oð2L � n2Þ to

transmit data to SP. To return the results, SP also costs
Oð2L � n2Þ. When k ¼ 2, CP and SP also cost Oð2L � n2 � n3Þ
and Oð2L � n2 � n3Þ to transmit the ciphertexts respectively.
Finally, CP calculates the error between model outputs and
the true values, which costs CP Oð6L � n3Þ and SP Oð2L � n3Þ
respectively. Thus, CP totally interacts 4 times with SP and
the communication cost during one round feed forward is
Oð4L � n2ðn1 þ n3ÞÞ. In addition, we assume that each
ciphertext tuple requires jNj to be stored. Hence, in feed for-
ward, it costs CP ððn2 þ Lþ 1Þ � n1 þ n2 þ ðn2 þ LÞ � n3Þ � jN j
to store all the encrypted data. In all, another ððn2 þ Lþ 1Þ �
n1 þ n2 þ ðn2 þ LÞ � n3Þ � ðjNj � 1Þ are needed in CP because
of the adoption of the privacy-preserving technique.

While performing the privacy-preserving back propaga-
tion, CP first compares the computed error with threshold
t, which costs Oð1Þ to transmit the ciphertexts. After that,
cd

ðkþ1Þ
hi is calculated, which costs CP Oð2L � ð4n2 þ 5n3Þþ

2n2 � n3Þ and SP OðL � n2 � n3Þ to transmit the intermediate
results respectively. Finally, CP updates the values of
weights and bias, which costs Oð2L � ðn1 � n2 þ n3ÞÞ to trans-
mit. Correspondingly, SP also costs Oð2L � n2 � ðn1 þ n3ÞÞ to
respond the results. Thus, CP totally interacts 9 times with
SP and the communication cost during one round privacy-

preserving back propagation is OðL � n2 � ð4n1 þ 3n3ÞÞ. Since
no additional storage overhead is incurred, we do not ana-
lyze it in this process.

Finally, we also compare the communication cost with
the prior work in [22] and [25]. As shown in Table 2, our
PDLM has the same magnitude of communication cost with
the mechanism in [25]. But the mechanism in [22] took less
that. In our PDLM, most communication cost is to achieve
the computation on multi-key encrypted ciphertexts. If
DOs’ data is encrypted by only one public key, we can opti-
mize our mechanism and obtain lower communication cost.

6 PERFORMANCE EVALUATIONS

In this section, we present a series of empirical results of
PDLM conducted over two real-world datasets, which indi-
cated that PDLM can efficiently and effectively fulfill the
aforementioned design goals. The experiments were con-
ducted on a machine with a 2.4 GHz eight-core processor
and 128 GB RAM.

Dataset. We mainly adopt the MNIST dataset [48] which
is composed of 60,000 training handwritten digits and
10,000 test ones from “0” to “9”. Each of them contains 784
features representing 28 � 28 pixels in the image. Addition-
ally, the CIFAR-10 dataset [49] is also used to evaluate the
efficiency of PDLM. CIFAR-10 is composed of 32 � 32 color
images in 10 classes, with 6,000 images per class. In total,
there are 50,000 training images and 10,000 test images.
Then, based on the Torch7 nn [50] packages, we construct
and train a LeNet deep learning model to evaluate the per-
formance of our PDLM.

6.1 Classification Accuracy

In the experiment evaluation, we mainly focus on analyzing
the classification accuracy of the trained model. To measure
the accuracy, we first split the training data into three parts
and assume that each DO contributes 20,000 examples to
train the model. Then, we evaluate the accuracy loss which
is caused by using Taylor theorem to approximate the Sig-
moid function (AppSigmoid) and compare that with the
non-privacy-preserving mechanism (NPP). The classifica-
tion accuracy is defined as CN=SN , where CN represents
the number of correctly classified items and SN represents
the total number of test items.

First of all, we carry out the analysis on the classification
accuracy of trained model influenced by the number of
data. As shown in Fig. 2, we assume that three different
DOs contribute their data to train the deep learning model
and the results show that the classification accuracy
increases with the number of data. With the training pro-
cess, the parameters of weights and bias would be amended
by the back propagation. So the classification of the test will
be more accurate. And as the increase of the number of data
(more DOs contribute more training data), the parameters
will be more fully and reasonably amended. So we can
obtain a more accurate trained model. As described above,
the increase and diversity of the training data will make the
deep learning models better.

In the following, we also compare the classification accu-
racy of PDLM with the Non-Privacy-Preserving mechanism
(NPP, as the baseline). We analysis the accuracy loss by

TABLE 2
Communication Cost Comparison with Prior Work

Privacy-preserving mechanism Communication cost

PDLM OðL � n2ð8n1 þ 7n3ÞÞ
SecureML [22] OðL � ðn1 þ n2Þ þ n1 � n2 þ n2 � n3Þ
Zhang et al. [25] OðL � ð2Ln1n2 þ n1 þ n2ÞÞ
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extending the number of Taylor series terms from 3 to 7. As
shown in Fig. 3, as the number of Taylor series terms grows,
the classification accuracy increases but not so much. In
other words, adding more Taylor series terms can reduce
the accuracy loss but the impact is minimal. Specifically, the
classification accuracy increases about 2 percent by extend-
ing the number of Taylor series terms from 3 to 5. And from
5 to 7, it only increases 0.5 percent. Additionally, compared
with NPP, the accuracy of our PDLM only decreases by 2
percent when we extend the series term to 7. So we realize
that the approximation of Sigmoid function is feasible and
we can use it in our privacy-preserving mechanism. As a
result, due to the introduction of privacy protection, the
training of deep learning model will obtain a suboptimal
result, up to 5 percent loss in the aspect of classification
accuracy when we extend the Taylor series term to 3.

6.2 Training Efficiency

To test the efficiency of our PDLM, we first discuss the com-
putation costs in different stages by varying the number of
training data, the number of features in training data, the
number of DOs and the number of nodes in hidden layer.
Then we consider the influence of Taylor series on computa-
tion cost and weight the efficiency and accuracy to deter-
mine that which series is reasonable. Varying with the
factors, we evaluate the running time of three stages in
PDLM, including the running time for encrypting the train-
ing data (@DOi), the running time for training the model
(@CP&SP ), and the running time for decrypting the
encrypted parameters ð@SP Þ. It should be noted that all the

reported time are counted over ten epochs and averaged
over 10 runs.

In Fig. 4, we plot the running time of our PDLM by vary-
ing with the training data and DOs. As shown in Fig. 4a, we
first evaluate the efficiency against the number of training
data. The simulation results show that the encryption time
and training time clearly increase with the number of train-
ing data. As the number of training data increase, more and
more data needs to be encrypted and DO will take more
time to do that. However, DO only need 839 ms to encrypt
all training data samples. Additionally, we also find that the
training time increase with the number of training data
while the decryption time remains stable. The reason for
that is CP and SP have more encrypted data to train but the
number of encrypted trained parameters is invariable. So
CP and SP will spend more time on training while SP does
not need more time to decrypt the encrypted parameters of
weights and bias.

In Fig. 4b, we evaluate the efficiency of our PDLM against
the number of features in training data. The simulation
results show that the training time, encryption time, and
decryption time always increasewith the number of features.
As the features increase, more pixels of the handwritten
images need to be encrypted and trained. So DO spends
more time to encrypt the training data. While the input fea-
tures increase, there will be more neural connections to be
established andmore parameters to be trained. So CP and SP
spend more time training the model. Finally, since more
parameters are generated between the input layer and hid-
den layer, SP also spendsmore time decrypting.

Fig. 2. Classification accuracy influenced by number of data. Fig. 3. Accuracy loss caused by Taylor theorem.

Fig. 4. Efficiency evaluation against training data and DOs.
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Then, we also plot the running time of our PDLM by
varying with the number of DOs. We assume that the total
training data is unchanged and more DOs just means more
different keys are introduced. As shown in Fig. 4c, the
encryption time of DOs is remained unchanged. The reason
for that is the varying of DOs does not change the input
data and its features, so the encryption time by DOs is sta-
ble. Additionally, the training time and decryption time by
CP and SP also remain basically unchanged. Although
more encryption keys are introduced, the calculation and
interaction processes between CP and SP do not increase
with that. So the training time by CP and SP remains
unchanged. After the training process, the parameters are
encrypted by DOs’ union public key and SP decrypts them
by the partial strong private key. So SP also does not need
any more time to decrypt the encrypted parameters.

In Fig. 5, based on the MNIST and CIFAR-10 datasets, we
plot the classification accuracy and running time of the
stages by varying with the number of nodes in hidden layer.
The simulation results show that the training time by CP
and SP is clearly increase with the number of nodes in hid-
den layer. The reason for that is CP and SP have to perform
more calculations to compute the relationships and update

the parameters between nodes with the increased number
of nodes in hidden layer. And in the above process, more
parameters are generated. So SP also spends more time
decrypting the encrypted parameters. The increase of nodes
in hidden layer does not affect the input training data, so
the encrypting time by DO is stable. Additionally, with the
increase of nodes in hidden layer, the classification accuracy
increases significantly. The reason for that is more nodes in
hidden layer will extract more abstract features based on
the inputs and it can fully reflect the relationships between
nodes and obtain a more detailed classification. However,
we can also find that the classification accuracy increase is
small by increasing the number of node from 128 to 160. So
we realize that designing 128 nodes in hidden layer is feasi-
ble and more nodes will reduce the performance of PDLM
significantly with the negligible accuracy improvement.
What’s more, because more features in CIFAR-10 are input
to the model, CP and SP spent more time on training the
model than that for MNIST dataset.

Then, based on the MNIST and CIFAR-10 datasets, we
plot the classification accuracy and running time of the
stages by varying with the number of Taylor series terms.
As shown in Fig. 6, the training time by CP and SP increases

Fig. 5. Efficiency against the number of nodes in hidden layer. Fig. 6. Efficiency against the number of Taylor series terms.
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with the number of Taylor series terms. The reason for this
is that with the extending of Taylor series terms, CP and SP
have to calculate more series in approximation of Sigmoid
function in feed forward stage. And since the extending of
series terms has no effect on the number of parameters and
input training data, the decryption time by SP and encryp-
tion time by DO remain unchanged. However, the extend-
ing of Taylor series terms will reduce the classification
accuracy loss, which has been indicated in Fig. 3. Hence,
based on the increased computational overhead and
reduced accuracy loss, we realize that extending the Taylor
series term to 3 is the most reasonable choice. Since more
parameters are used to connect the input layer and hidden
layer in CIFAR-10, SP spents more time on decrypting the
encrypted parameters than that for MNIST dataset.

Finally, we also discuss the efficiency of PDLM along
with the privacy-preserving mechanisms in [22] and [25].
Generally speaking, the training time will increase with the
growth of the number of training data and features [25] and
we have verified that in Figs. 4a and 4b. So we only compare
the training time with two privacy-preserving mechanisms
by varying with the number of training data. As shown in
Fig. 7, the training time of three mechanisms varies as
expected, which increases with the number of training data.
However, based on all datasets, our PDLM requires 2069.7
min and 2041.3 min to train the model for MNIST and
CIFAR-10 respectively, but the mechanism in [22] will spent
3209.3 min to train that over the same number of epochs.
While given one simulation node in cloud, the mechanism
in [25] also required about 2041 min to train the model for
the same MNIST dataset. But by varying with the number
of cloud nodes, their training time will be greatly reduced,
which is shown in Fig. 10 in [25]. Therefore, we believe that
our PDLM is efficient enough and can be more efficient
when we adopt a multi-node cloud platform. Since the
training process is conducted over multi-key encrypted
datasets, our PDLM has obvious lower efficiency than the
conventional non-privacy-preserving mechanism.

7 CONCLUSION

The sensitive data which is collected to discover valuable
information by deep learning model seriously threats users’
personal privacy, especially when service providers move
the collected data to untrusted clouds. In this paper, we
present a novel solution, namely PDLM, to address the

grand challenges in privacy-preserving deep learning
model. In PDLM, we consider different DOs encrypt their
data with multiple keys and upload the encrypted data to
SP. Then, SP and CP will train the model based on the
multi-key encrypted data with an efficient privacy-preserv-
ing calculation toolkit. Moreover, we evaluate the effective-
ness and performance of PDLM and the results justify that
PDLM is effective and efficient. As part of our future work,
we will consider the different distributions of collected
training data and design a more efficient privacy-preserving
mechanism to achieve the deep learning for different DOs.
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