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The Metaverse, envisioned as the next-generation Internet, will be constructed via twining a practical world in a virtual

form, wherein Meterverse service providers (MSPs) are required to collect massive data from Meterverse users (MUs). In this

regard, a critical demand exists for MSPs to motivate MUs to contribute computing resources and data while preserving user

privacy. Federated learning (FL), as a privacy-preserving collaborative machine learning paradigm, can support distributed

intensive computation in Metaverse. In this work, we irst investigate minting the machine learning models into NFT with FL

assistance (referred to as FL-NFT), such that MUs as stakeholders can control the ownership and share the economic value of

user-generated content (UGC). Speciically, MUs are encouraged to establish a decentralized autonomous organization (i.e.,

MU-DAO) to aggregate local models and mint FL-NFT. MUs and MSPs optimize the strategies by formulating an imperfect

information Stackelberg game (IISG) to trade of the cost and beneit. We apply the backward induction to derive the

equilibrium solution. Then, we construct a privacy-preserving multi-winner sealed-bid auction mechanism (PMS-AM), in

which the Hidden Markov Model (HMM) assists MSPs in choosing rational bidding strategies according to historical bids,

and the double auction mechanism determines the winners and price of FL-NFT. Finally, the numerical results based on

theoretical analysis and simulations demonstrate that the proposed PMS-AM can increase the quality of FL-NFT and achieve

the economic properties of incentive mechanisms such as individual rationality and incentive compatibility.

CCS Concepts: · Theory of computation→ Algorithmic game theory and mechanism design; Market equilibria.

Additional Key Words and Phrases: Metaverse, blockchain, federated learning, NFT, auction mechanism, Stackelberg game,

HMM

1 INTRODUCTION

The rapid development of emerging communication and multimedia technologies, such as beyond 5G/6G,

augmented reality (AR), virtual reality (VR), mixed reality (MR) and the tactile internet (TI) make it possible for

users to immerse in various Metaverse services physically [26], including entertainment [21], visual campus [8],
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healthcare [57], e-commerce [17], smart city [24], and digital twin (DT) [50], etc. In 1992, the word "Metaverse"

irst appeared in the science iction Snow Crash of Neal Stephenson [19]. In 2021, Facebook was even rebranded

as "Meta", which brought the Metaverse back to cutting-edge discussions. Many lite Metaverse games, such

as Roblox and Fortnite, have been pursued by extensive users. Some technology giants have been involved in

Metaverse services, including Microsoft, Apple, Google, Tencent, Baidu, etc. Microsoft partner has proposed a new

MR solution called HoloLens [15] for training, learning, and work. Google is also introducing immersive views

and the geospatial API for Google Maps that could support the AR experience. Although increasing Metaverse

services are emerging, it is still far from the ultimate Metaverse with the feature of immersion, embodiment,

universality, and interoperability [53]. In the upcoming Web 3.0, Metaverse can provide a decentralized immersive

virtual world, where Metaverse users (MUs) as stakeholders will be able to build the autonomous ecosystem and

share the economic value.

In Metaverse services, the MUs can play as avatars immersing in the 3-dimensional (3D) virtual world by

accessing the seamless Metaverse service developed by various Metaverse service providers (MSPs). In order

to support real-time and immersive experiences for MUs, intensive rendering computation and low-latency

communication are required. For example, there are many MUs with viewpoint changing dynamically, in which

the tiled video [7] needs to be rendered in real-time. Assisted by edge computing, the rendering tasks can be

oloaded to VR devices at edge networks to reduce the communication delay signiicantly, especially for some

delay-sensitive tasks (e.g., VR viewpoint prediction). Moreover, the forecast pixels that are watched can be

transmitted ahead of time, so the tiling of VR video saves bandwidth and reduces transmission delay signiicantly

[53]. However, there is still resource overhead and risk of privacy disclosure, thereby an incentive mechanism

needs to be designed to subsidize the participating cost of MUs.

1.1 Research Motivation

The ecosystem established by MUs has recently become a promising topic for driving innovations toward Meta-

verse applications. Blockchain-driven Metaverse has recently attracted extensive attention due to its decentralized

characteristics, where autonomous ecosystems based on blockchain bring feasible infrastructure to enable the

decentralized Metaverse. The ubiquitous Metaverse services require a decentralized autonomous ecosystem to

address the critical issue of monopolists and dictators in the Metaverse. MUs, as essential stakeholders, need to

get beneit from this ecosystem, in which they can create a large number of user-generated content (UGC) (e.g.,

avatar models).

Federated learning (FL) [22] as a privacy-preserving collaborative machine learning paradigm [43] can be used

to organize MUs to facilitate the creation of UGC in the form of FL global models (i.e., FL-NFTs), which can

support intensive computation by collective eforts. In fact, the decentralized federated learning marketplace

is a huge industry with good business prospects. There is an assured demand for companies to buy and sell

valuable learning models through a service interface, including inance, healthcare, map navigation, etc. There

are some real-world data marketplaces, like Dawex1, Lotame2, and Oracle BlueKai3. For example, Dawex builds a

trusted AI marketplace to support AI model providers, data providers and AI model users conducting AI-data

transactions. In this regard, federated learning as a distributed machine learning paradigm can transform data

without getting access to the raw data.

In edge-enabled Metaverse, obtaining a high-quality FL model requires all participant MUs to exert enough

efort, such as CPU, storage, and bandwidth resources. Although the models can be trained when the computation

resources are idle, achieving efective and fair FL in the Metaverse is still practically impossible without reasonable

1https://www.dawex.com/en/news/making-ai-promise-reality-with-ai-marketplaces/
2https://www.lotame.com/
3https://www.oracle.com/cx/marketing/data-management-platform/
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Fig. 1. Metaverse service providers bid for FL-NFT by auction smart contract from MU-DAO.

incentive mechanisms. A few incentive mechanisms for FL have been proposed, but they are not directly applicable

in the Metaverse scenario. In this paper, we are particularly interested in studying an incentive mechanism

to encourage MUs to participate in a decentralized autonomous organization (i.e., MU-DAO) to mint FL-NFT

cooperatively. There are still some critical challenges to be dealt with, as described below.

C1. How to trade of the cost and beneit of MUs in the process of FL-NFT minting based on blockchain?

C2. How to determine a reasonable price of FL-NFT to realize individual rationality and market equilibria?

1.2 Our Contributions

To mitigate the above critical challenges, we introduce a privacy-preserving multi-winner sealed-bid auction

mechanism (PMS-AM) to assist MSPs in bidding for the FL-NFT, as shown in Fig. 1. Speciically, MUs are

encouraged to establish a decentralized autonomous organization MU-DAO to train FL local models and aggregate

global models, which can be minted into Non-Fungible Tokens (i.e., FL-NFT). A blockchain-based auction smart

contract as the auctioneer determines multiple winners according to bids of MSPs, where the higher the bid and

the priority with accessing FL-NFT can be released until the auction clock expires. We extend the double auction

mechanism for FL-NFT based on our previous work [41]. The main contributions of this paper are summarized

as follows:

• We investigate minting the federated learning models into NFT (i.e., FL-NFT), encouraging MUs as stake-

holders to participate in FL model minting and share the economic value. In order to mitigate the issue of

monopolists and dictators in Metaverse, participating MUs establish a decentralized autonomous organiza-

tion MU-DAO to train the FL global model collaboratively and mint it to an FL-NFT.

• Considering the instability of the auction market, we formulate the imperfect information Stackelberg

game (IISG) to optimize the training strategies of MUs and the bidding strategies of MSPs, which realizes

utility maximization and individual rationality. We adopt the backward induction to derive the equilibrium

solution and prove the existence and uniqueness of the Stackelberg equilibrium.

• In order to price FL-NFT reasonably, a privacy-preserving multi-winner sealed-bid auction mechanism

(PMS-AM) is proposed, where the auction smart contract acts as auctioneer to manage and control the

trading of the FL-NFT in a distributed manner. The Hidden Markov Model (HMM) is utilized to assist

MSPs in choosing rational bidding strategies. We conduct some simulations to validate the efectiveness of

PMS-AM.

The remainder of this paper is organized as follows. In Section 2, we review related works and drawbacks.

Section 3 presents the FL-NFT auction model and FL cost-beneit framework. Section 4 gives the strategies

ACM Trans. Multimedia Comput. Commun. Appl.
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optimization of MUs and MSPs based on the IISG. In Section 5, the auction process of FL-NFT by PMS-AM is

proposed. We conduct simulations and present the numerical results in Section 6. Finally, we conclude the paper

in Section 7.

2 RELATED WORK

In this section, we briely review the related research about auction and incentive mechanisms that can be used

in Metaverse. We then discuss the role of blockchain and federated learning in Metaverse.

2.1 Auction and Incentive Mechanism in Metaverse

In Metaverse service, UGC refers to a form of diferent digital content generated by MUs’ contribution, which

contains personal privacy data and potential economic value. For blockchain-driven Metaverse, there are surging

need for UGC to share its economic value among all stakeholders. Some researchers have focused on incentive

and auction mechanisms for generating UGC. Xu et al. [54] designed a deep reinforcement learning (DRL)-based

incentive mechanism for VR service in the wireless edge computation empowered Metaverse, in which a double

Dutch auction mechanism is adopted to determine bidding strategies and allocation schemes of VR services.

Jiang et al. [18] adopted the Coded Distributed Computing (CDC) scheme to support rendering computation

in Metaverse services, where a hierarchical structure composed of a coalition game and Stackelberg game was

designed to choose reliable workers to participate in the rendering tasks. Sun et al. [46] investigated dynamic

digital twin (DT) and formulated a two-stage Stackelberg game to incentive users to participate in aerial-assisted

Internet of Vehicles (IoV). Lin et al. [30] proposed an incentive-based congestion control scheme for Digital

Twin Edge Networks (DTENs), in which the Lyapunov optimization theory [3] was adopted to decompose the

long-term control decision into a series of online associate decisions.

Without a reasonable incentive mechanism, MUs are unwilling to contribute computation and data resources

to participate in Metaverse service computing under the risk of privacy disclosure. Many existing incentive

mechanisms of Metaverse focus on the resource allocation rules, while they lose sight of the economic value

contained in UGC and the nature of public goods [44]. The auction mechanism is designed to stimulate buyers to

bid their actual valuations for UGC ownership, but the potential risks of decision privacy lead to an unfair auction

market. Wang et al. [48] proposed a privacy-preserving and truthful double auction mechanism PS-TAHES

based on additive homomorphic encryption [38] to prevent personal privacy information leakage in the auction.

However, research on incentive mechanisms in Metaverse is still in its infancy and they rarely regard privacy

concerns. In contrast, we have considered model privacy and auction privacy issues in the design of the incentive

mechanism. Moreover, the non-cooperation relationship between MSPs makes the design of auction mechanisms

under a scenario of imperfect information. Therefore, the fairness and practicability of the auction mechanism of

UGC need to be holistically studied.

2.2 Blockchain and Federated Learning in Metaverse

Blockchain is an essential infrastructure for the decentralized Metaverse ecosystem [53], which ensures security

management and access control [12] for UGC with properties of decentralization, tamper-proof, and trustworthi-

ness [13]. A review [11] discussed the Metaverse based on blockchain from the technical point of view and put

forward some promising directions to innovate the usage of blockchain in Metaverse applications. Yang et al.

[55] discussed how blockchain-empowered artiicial intelligence (AI) technologies in the three-dimensional (3D)

virtual worlds. Fan et al. [10] implemented a blockchain-based prototype to simulate a decentralized, fair and

transparent UGC trading platform, in which a dynamic game is adopted to model interactions among mobile

devices. Suhail et al. [45] proposed the usage of blockchain to target key challenges of untrustworthy data

ACM Trans. Multimedia Comput. Commun. Appl.
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transmission and fault diagnosis in DT systems. However, there are few studies on the incentive mechanisms in

the blockchain-driven Metaverse.

FL as a collaborative distributed learning paradigm allows clients to share information by gradient parameters

of models instead of raw data [53], which eiciently assists in executing intensive computation on many edge

devices of MUs. Chen et al. [4] designed a collaborating mobile edge computing paradigm with FL for AR

applications. Moreover, there are some research works focused on FL-based digital twins. Lu et al. [33] utilized FL

to construct the digital twin models for IoT devices and bridge the gap between the physical system and digital

space in digital twin edge networks (DITENs). Lu et al. [34] further connected digital twins and wireless networks

by the digital twin wireless networks (DTWN), in which real-time data signals and results can be migrated to

the IoT edge devices. In terms of FL model utility, Zhang et al. [59] focused on trading of the privacy cost and

utility loss to maintain a provable privacy guarantee, and the results showed that there is no free lunch for the

privacy-utility trade-of. To address the risk of free-riding and unfairness, FedIPR [28] veriied the ownership of

FL models by watermarks embedded into the model. However, the existing works fail to address how to trade

of the cost and utility of FL model training and determine the economic value of the FL models. Therefore, FL

model market equilibria and auction mechanisms need to be investigated in-depth.

3 SYSTEM MODEL

In the Metaverse service, the MUs interact with the virtual world via some intelligent edge devices with an

incredible amount of digital content created, i.e., UGC. In order to protect the ownership of creators, UGC can be

minted to NFT via blockchain for collecting, trading, and accessing. The buyers can bid for the NFT with access

right through digital currency based on blockchain. In this context, we focus on one novel type of UGC in the

form of an FL global model, which can be minted as FL-NFT by a decentralized autonomous organization termed

MU-DAO. In this section, we propose an FL-NFT auction model and formulate an FL cost-beneit framework in

the process of FL-NFT minting.

3.1 FL-NFT auction model based on blockchain

We consider an FL-NFT auction model based on blockchain with � Metaverse users (MUs) labeled as U =

{�1,�2, . . . ,�� } and� Metaverse service providers (MSPs) labeled as P = {�1, �2, . . . , �� }. All MUs are candi-

dates for organizing a decentralized autonomous organization (i.e., MU-DAO) voluntarily, which can perform

local model training and aggregate model parameters by a smart contract for a given period � . FL global models

as one type of UGC can be minted as FL-NFT via blockchain. MSPs can bid for the FL-NFT to subsidize the com-

puting resources cost and improve the user immersive experience to subside data contribution for heterogeneous

edge devices of MUs, such as AR glasses and VR head-mounted devices (HMDs). For any MU �� with dataset

D� = {(�1, �1), (�2, �2), . . . , (�� , �� )}, the loss function �(·) [60] can quantify the diference between the predictive

value � (�� , �� ) and labeled value �� . For MU-DAO, the target of FL tasks is to minimize the loss function �(·)

under budget constraints as

T (��
� ) = ���min

��−1
�

{
1

�

�︁

�=1

�
(
�
(
��−1
� , ��

)
, ��

)
}
, (1)

� .� .

�︁

�=1

�� ≤

�︁

�=1

� � , (2)

where �� is the cost of computing resources and data contribution for�� , and � � is the subsidizing budget of � � .

The proposed PMS-AM system model based on blockchain consists of three phases: FL model training, FL-NFT

minting, and FL-NFT auction, as shown in Fig. 2. In the FL model training phases, MUs can adjust the investment
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Fig. 2. The proposed PMS-AM system model based on blockchain. 1) FL model training process by Stackelberg game. 2)

FL-NFT minting process based on blockchain 3) MSPs bid for FL-NFT by auction mechanism.

of resources in local model training and privacy budget based on the Stackelberg game, in which the backward

induction is utilized to derive an equilibrium solution. In the FL-NFT minting phases, the smart contracts serve

the role of the aggregator to generate FL-NFT and mint FL-NFT in the form of an FL global model by consensus

within MU-DAO. In the FL-NFT auction phase, the HMM assists MSPs in choosing rational bidding strategies

according to historical bids and an auction contract determines multiple winners with access priority according

to sealed bids ofered by MSPs.

1) FL model training

MUs are organized in a decentralized autonomous organization (i.e., MU-DAO) to participate in the FL model

training collaboratively after MUs decide on their training strategies by the imperfect information Stackelberg

game (IISG). MU-DAO initializes the FL model parameters according to the chosen machine learning model

and broadcasts them to MUs which begins local model training. The MU-DAO aggregates local models of MUs

by a smart contract, which can encode by programming language (e.g., solidity) in advance according to the

model aggregation algorithm, such as FedAvg [29], FedSim [40], FedAdp [37], FedSGD [5]. The smart contract

distributes the �-th round model parameter �� to MUs, which can adopt the mini-batch stochastic gradient

descent algorithm [36] to update local model parameters as

g
(
��
� , ��

)
=

1

|�� |

|�� |︁

�=1

��
(
�
(
��−1
� , ��

)
, ��

)

���−1
�

, (3)

where �� is the mini-batch data sample,�� updates local model parameters by��
� =�

�−1
� − � · g(��−1

� , �� ). The

model training process repeats until the global model converges and FL global model�∗ is generated. In order

to protect the privacy of intermediate parameters, diferential privacy [9] is utilized to disturb the gradient

parameters before sharing in MU-DAO. We adopt Laplace noise to disturb gradient parameters g(��
� , �� ) as

g̃
(
��
� , ��

)
= g

(
��
� , ��

)
+ < ���

(
�,

Δ�

��

)
>, (4)

where � is the location parameters, and
Δ�

��
is the scale parameters of Laplace distribution, Δ� is the local sensitivity

of noise, �� is the privacy budget set by�� .
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Table 1. Main Notations and Definitions

Notation Deinition

�∗ The model parameter of FL-NFT

��
� The model parameter of�� in � -th local iteration

g̃ The perturbed gradient of the local model

� The capacitance parameter

�� The device memory of��

�� The average memory consumption ratio of��

��
� The computation cost factor of��

�
�
� The privacy cost factor of��

�� The total cost of��

��∗

� The model quality satisfaction of � �

��
∗

� The model freshness satisfaction of � �

� � The bid ofered by MSP � �
Φ� The utility of�� in FL-NFT auction

Ψ� The utility of � � in FL-NFT auction

2) FL-NFT minting

When FL global model�∗ is generated, the smart contracts serve as the minters to collect the model parameters

�∗, the minting timestamp ��∗ , and the public key of MU-DAO, etc. Then, miners pack this information to a ile

named l-nft.js, which is recorded in the blockchain to ensure that FL-NFT is truly decentralized. The ownership

of FL-NFT belongs to the whole MU-DAO and allows FL-NFTs to be sold by the consensus within MU-DAO. The

MSPs (i.e., buyers of FL-NFT) can get the access priority of FL-NFT to improve the user experience in Metaverse

services.

3) FL-NFT auction

MSPs ofer bids to the blockchain-based auction platform, where the multi-winner sealed auction mechanism

is implemented in the auction smart contract to realize automatic auction execution. The auction smart contract

as the auctioneer determines multiple winners according to bids of MSPs, where the higher the bid, the higher

access priority of FL-NFT can be given until the auction clock expires. In Section 5, we adopt HMM to assist

MSPs in choosing rational bidding strategies according to historical bids, achieving individual rationality and

incentive compatibility. Due to heterogeneity between MUs in computing, storage, communication resources,

and data quality, there are free-rider and unfairness issues within MU-DAO. Therefore, it is necessary to trade of

the cost and beneit to encourage more MUs to participate in MU-DAO fairly. We formulate the FL cost-beneit

framework in Section 3.2 and list notations and deinitions used in this paper in Table 1.

3.2 FL Cost-benefit Framework of the Metaverse Users

Assisted by edge computing, rendering tasks in the Metaverse could be oloaded to VR devices of MUs in edge

networks. MUs must consume computing resources to train FL local models, such as CPU and memory. In

addition, MSPs are required to collect personal data from MUs to predict user behavior and social relationships.

Therefore, we mainly consider the computation and privacy costs. Based on the quantiication of the above two

cost elements, the cost function of MU�� to perform the FL training task can be expressed as

�� = �
�
� �� +�

�
� �� ,∀�� ∈ Z

+,∀�� ∈ R
+, (5)

where ��� and �
�
� denote the unit cost factors of computation resource consumption and privacy disclosure,

respectively. �� and �� are the numbers of local iterations and the diferential privacy budget [9], respectively.
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• Computation cost factor ��� : The CPU performance of �� for local model training is �� (i.e., CPU clock

frequency), �� is the average memory occupation ratio in one iteration, �� is the device memory, and the

memory occupation for local model training is ���� . Based on the secondary energy consumption model of

CPU [47], the per unit computation cost of local model iteration can be deined as

��� = ������ �
2
� + (1 − �) ���� , (6)

where � is the computation cost adjustment factor, � is the efective capacitance [20], �� is the CPU cycle

when handling one batch of data, and �� is the batch size for each iteration of the local model.

• Privacy cost factor �
�
� : In order to minimize the risk of privacy disclosure when sharing the local model in

MU-DAO, the privacy cost of intermediate parameters is considered. Inspired by [32], we adopt gradient-

norm to measure privacy preference. Thus, the per unit cost of privacy disclosure �
�
� can be deined

as

�
�
� = � ln

(
1 +

̃g
(
��
� , ��

)) , (7)

where � is the privacy cost adjustment factor, the smaller the privacy budget �� is, the greater the noise

disturbance and the lower the model quality could be. Therefore, MU-DAO prefers to recruit more MUs

with larger privacy budgets to improve the quality of FL-NFT, which increases the privacy cost.

Note that we consider a general cost model without constraint on the type of blockchain. Gas fees need to be

considered an optional cost factor for Ethereum. In the FL-NFT auction market, the MSPs determine the bidding

strategies for FL-NFT by satisfaction evaluation. MUs need to decide on the training strategies for FL-NFT by

adjusting their local iterations and privacy budget to maximize their beneits. Unlike the traditional FL incentive

mechanism, in blockchain-driven Metaverse, both the FL model quality and immersive experience of MUs need

to be considered to achieve a holistic evaluation of the satisfaction of FL-NFT. With the above consideration, we

combine model quality ��
∗

� and freshness ��
∗

� to measure the satisfaction of MSP � � for the FL-NFT�
∗ minted

by an MU-DAO, denoted as

��
∗

� =

(
��

∗

�

)���
+
(
��

∗

�

)���
=

(
��

∗

�

)�
+ ��

∗

� , (8)

� .� . � =

�
�
�

���
> 0, 0 < �

�
� ≤ 1, 0 < ��� ≤ 1, �

�
� + ��� = 1, (9)

where �
�
� and ��� are demand price elasticity of model quality��

∗

� and freshness ��
∗

� determined by � � , respectively
4.

The rationale behind��
∗

� and ��
∗

� is the contribution of MUs in FL model training, higher contribution of MUs

leads to higher satisfaction for MSPs, resulting in higher bids. Therefore, the satisfaction contribution of MUs to

the FL-NFT in model quality and freshness also needs to be measured by an appropriate metric. Let �
�
� and ���

be the satisfaction contribution in model quality and freshness for �� , respectively, we have �
�∗

� =
∑�
�=1 �

�
� and

��
∗

� =
∑�
�=1 �

�
� . We deine these two satisfaction contributions for�� in detail as follows:

• The model quality contribution �
�
� : For �� , the model quality contribution is determined by its local model

quality and raw data quantity (i.e., the local data size used for training). However, there may be a large

amount of redundant data in the training data, so the contribution evaluated by the total training data

size is one-sided. It is more practical to incorporate data quality based on cross-entropy [6] as �� =

4The parameters �
�
� = 1 and ��� = 1 denote that only model quality or freshness is considered by � � , �

�
� + ��� = 1 denotes that both model

quality and freshness are taken into account by � � .
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−
∑�
�=� ������ (�� ), where � (�� ) is the predicted value by the function � (·) and �� is the labeled value.

Therefore, �
�
� can be denoted as

�
�
� =

�0 |D� |

�1 −
1
�

∑�
�=1 ������ (�� )

, (10)

where �0 > 0 and �1 > 0 are the model utility parameters, which are set according to the loss function,

neural network structure and data distribution [29]. In this paper, �0 represents the number of model

hidden layers, and �1 represents the number of model output layers, � represents the total round of ��
participating in FL.

• The model freshness contribution ��� : Metaverse services allow users to immerse themselves via life-like

real-time interaction. The fresher FL-NFT leads to more accurate prediction, resulting in better immersive

experiences. Inspired by existing work [1, 58], a metric of the age of information (AoI) can be used to

denote the duration of MUs participating in FL-NFT minting. For �� , the duration �� mainly includes the

time of training ��� , uploading � �� and consensus � �� , which can be denoted as

�� = �
�
� +� �� +�

�
� , (11)

where ��� = ���(1/�� )
D�

��
, the smaller the value �� is, the higher accuracy of the local model could be,

yet resulting in a longer training time for �� , i.e., the numbers of local iterations. Furthermore, the model

parameters and other necessary information are broadcasted in MU-DAO with a communication delay,

which is related to the transmission data size �� and the communication resource �� (i.e., bandwidth) used

by �� , deined as � �� =
��

�����2 (1+�� )
, where �� denotes the Signal-to-Interference-plus-Noise Ratio (SINR) for

the communication channel. � �� mainly depends on diferent consensus algorithms. A small value of ��
indicates a fresher local model, as per [31], the model freshness contribution ��� can be deined as

��� = ���(1/�� ), (12)

We assume that under a rational auction market, �� can get the beneit ratio from the bids of FL-NFT, which is

determined by their model quality contribution ratio �
�
� =

�
�
�∑�

�=1 �
�
�

and freshness contribution ratio ��� =
���∑�
�=1 �

�
�

.

Therefore, the beneit of�� from bid of � � can be formulated as

�� � = � �

(
��

∗

�

)�
�
�
� + ���

�∗

� ��� , (13)

where � � and �� are MSP � � ’s unit satisfaction bidding strategies for ��
∗

� and ��
∗

� , respectively.

4 STRATEGY OPTIMIZATION BASED ON STACKELBERG GAME

In this section, we construct an imperfect information Stackelberg game (IISG) [49] to trade of the cost and

beneit by optimizing the training strategies of MUs and bidding strategies of MSPs. In the irst stage, the bidding

strategies of MSPs are determined by the satisfaction with model quality and freshness. In the second stage, MUs

adjust the numbers of local iterations and privacy budgets according to the bidding strategy, which can ensure

individual rationality and incentive compatibility. In the practical auction market, the MSPs demanding the same

FL-NFT are non-cooperative relationships, so the bidding strategies of competitors are hidden from MSPs due to

the fairness and privacy requirement.

4.1 Stackelberg Game Formulation

In the game decision, we assume that MSPs and MUs are all rational individuals, in which MUs can make the

decision in a distributed manner within MU-DAO. We model the auction interactions among MSPs and MUs as a

ACM Trans. Multimedia Comput. Commun. Appl.
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multi-leader multi-follower IISG, in which the MSPs are leaders and MUs are followers. We construct the IISG to

analyze the optimal strategies of MUs and MSPs as below.

1) Training strategy optimization of MU in Stage II

In Stage II of IISG, each rational MU�� can adjust training strategies (i.e., local iterations and privacy budget)

according to the bids ofered by the MSPs within a given game decision period � . Let K�
∆
= (��1, ��2, . . . , ��� ) and

E�
∆
= (��1, ��2, . . . , ��� ) be the local iterations and privacy budget of�� to the FL-NFTs demanded by MSPs P. The

utility function is usually a concave function with the property of decreasing marginal utility. Therefore, the

optimization problem for MU�� within a given game decision period � can be formulated as follows:

Problem 1. The utility maximization problem for MU�� in Stage II as

maxΦ� (K� , E� ) =

�︁

�=1

�� �
(
ℎ
(
�� �

)
+ ℎ

(
�� �

) )
−�� , (14)

� .� . �1 : �� ≤

�︁

�=1

�� �
(
ℎ
(
�� �

)
+ ℎ

(
�� �

) )
,∀�,

�2 :
�� �

����� �
2
�

+
����

��
≤ �,

(15)

where ℎ(�� � ) + ℎ(�� � ) indicates the beneit of MUs enjoying the Metaverse service, ℎ(�) is deined by the �-fair

function adopted in [51, 52] deined as ℎ(�) = 1
1−� �

1−� 5, �� � is the beneit of MU�� from the bid of MSP � � , �� is

the bandwidth used for consensus communication with�� . �1 ensures that total bidding reward of�� exceeds

the cost. �2 expresses that the decision time of�� is limited and cannot exceed given the game decision period � .

Upon observing the bidding strategies ofered by the MSPs, each MU�� determines the optimal training strategies

(K∗
� , E

∗
� ).

2) Bidding Strategy of MSPs in Stage I

In Stage I of IISG, each rational MSP � � determines bidding strategies (i.e., bids of model quality and freshness)

according to the satisfaction of the FL-NFT, which are related to the training strategies of MUs. Let Q �
∆
=

{�1� , �2� , . . . , �� � } and F �
∆
= {�1� , �2� , . . . , �� � } denote bids of model quality and freshness ofered by MSP � �

accroding to the contribution ratio of MUsU, respectively. Then, the optimization problem for MSP � � can be

formulated as follows:

Problem 2. The utility maximization problem for MSP � � in Stage I as

maxΨ�

(
Q � , F �

)
=

�︁

�=1

(
�� ��

�
� � + �� ��

�
� � − �� �

)
, (16)

� .� . �1 :

�︁

�=1

(
�� � + �� �

)
≤ � � ,∀�,

�2 : � � ≤ �,∀�,

(17)

where�
�
� � and�

�
� � are the winning probability for �� � and �� � , respectively, � � is the bidding decision time of MSP

� � . �1 ensures that the total bids are no more than the budget constraint for MSP � � . �2 expresses the decision

time is limited. The winning probability for MSP is relevant to the proportion of the total bid in general, which

5The function ℎ (� ) is non-decreasing and concave, i.e.,
�ℎ (� )
�� ≥ 0 and

�2ℎ (� )

��2 < 0, which indicates decreasing marginal utility to the

Metaverse service.
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can be denoted as �
�
� � =

�� �(
�� �+

∑�
�� ′, � ′≠�

�� � ′
) and � �

� � =
�� �(

�� �+
∑�

�� ′, � ′≠�
�� � ′

) 6. Due to the non-cooperative relationship

among MSPs, the actual bids of other competitors are non-public information. At the beginning of the FL-NFT

auction, MSP � � can observe the bids of other competitors in the historical auction to determine initial bids. Then,

MSPs can leverage HMM to obtain the most likely bidding strategies of other competitors.

3) Stackelberg equilibrium

Stackelberg equilibrium is an optimal solution where the utilities of the followers can be maximized by choosing

the best responses given the optimal strategies of leaders. Problem 1 and 2 together form an IISG with the

objective of inding the Stackelberg equilibrium in Stage I and Stage II, i.e., the solution at which the MUs’ utilities

are maximized by adjusting training strategies given that the MSPs ofer their optimal bidding strategies. We

consider a multi-MU and multi-MSP game, where each MU�� has a inite set of training strategy A
�
�

∆
=< K� , E� >,

MSP � � has a inite set of bidding strategy A
�
�

∆
=< Q � , F � >, and A

�
� × A

�
� → R.

Deinition 1: The Stackelberg equilibrium for IISG is an optimal training strategy < K∗
� , E

∗
� > for MU�� given

a bidding strategy < Q∗
� , F

∗
� > for MSP � � such that:

Φ� (K
∗
� , E

∗
� ) ≥ ���{Φ� (K� , E� )}, �� � ∈ Z

+, �� � ∈ R
+,∀�, (18a)

Ψ� (Q
∗
� , F

∗
� ) ≥ ���{Ψ� (Q � , F � )}, �� � ∈ R

+, �� � ∈ R
+,∀� . (18b)

Note that the Stackelberg equilibrium deines a situation where utility maximization for MUs and MSPs is

reached with the adjustment of action strategies. Condition (18a) means that MUs’ training strategy is an optimal

response to MSPs’ bidding strategy at each game decision period of the IISG. Condition (18b) implies that the

expected utility generated by the bidding strategy of MSPs is optimal under the constraint that the training

strategies of MUs must always be an optimal response. In the FL-NFT auction market, given the bidding strategies

of MSPs, the MUs act as followers to optimize their training strategies to realize the Stackelberg equilibrium. To

investigate the Stackelberg equilibrium of IISG, we adopt the backward induction in the following subsection to

address the Problem 1 and 2.

4.2 Solving Stackelberg Equilibrium of IISG

In this subsection, we solve the Stackelberg equilibrium of IISG by the backward induction, where the existence of

the equilibrium is investigated by the negative deinite of the Hessian matrix, and the irst-order partial derivative

of utility derives the unique subgame equilibrium [42].

Theorem 1. The existence and uniqueness of the subgame equilibrium for MUs in Problem 1 can be guaranteed,

i.e., every MU has an optimal and unique training strategy (K∗
� , E

∗
� ) for the numbers of local iterations and privacy

budget.

Proof. In order to guarantee the existence, we observe the Hessian matrix of Φ� (K� , E� ) with respect to K� is

� (Φ� ) =



�2Φ�

�K2
�

�2Φ�

�K��E�
�2Φ�

�E��K�

�2Φ�

�E2
�


= ����(��� � , �

�
� � ), (19)

and

��� � =
[
�2Φ� (�� ,�� )
��� � ��

′
� �

]
�, �

′
∈{1,2,...,� }

= −����(ℎ��1, ℎ
�
�2, . . . ℎ

�
� � ) < 0, (20)

6The parameters �� � ′ and �� � ′ are the predicted bids of other competitors excepting � � for model quality and freshness, respectively.
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where ℎ�� � = �� ��
−�−1
� � . It is clearly that��� � is negative deinite. Then, we derive the second derivative of Φ� (K� , E� )

with respect to E� as

��� � =
[
�2Φ� (K� ,E� )
��� � ��� � ′

]
�, � ′∈{1,2,...,� }

= −����(ℎ��1, ℎ
�
�2, . . . ℎ

�
� � ) < 0, (21)

where ℎ�� � = �� ��
−�−1
� � . We can easily derive that ��� � is negative deinite, and thus � (Φ� ) is negative deinite and

Φ� (K� , E� ) is concave. Therefore, it can be proved that the existence of equilibrium solution (K∗
� , E

∗
� ) in Problem

1.

We further take the irst-order partial derivative of Φ� to obtain the equilibrium solution as

(K∗
� , E

∗
� ) = [( −�

︃
��� /�� � ,

−�

︃
�
�
� /�� � )] . (22)

Since the numbers of local iterations of MUs are within the positive integer space Z+. MUs can adjust the numbers

of local iterations K∗
� to K�∗

� through the Eq.(23).

K�∗
� =

⌈
K∗
�

⌉
, (23)

where ⌈�⌉ is the integer function, denote that ⌈�⌉ =���{� ∈ Z, � ≤ �}. So far, we have solved the Stackelberg

equilibrium in Problem 1.

We further analyze the equilibrium existence and uniqueness for the optimal bidding strategies of MSPs

through Theorem 2. Given the training strategies of MUs in Problem 1, each MSP � � adjusts the bidding

strategies to maximize its utilities Ψ� . In the irst game period, the MSP � � is able to ofer the bidding decision by

the predicted satisfaction for the FL-NFT due to the feature of irst-moving. By analyzing any utility Ψ� for MSP

� � given in Eq.(16) and condition given in Eq.(17), we can further investigate the properties of Ψ� (·) as follows.

Theorem 2. The existence and uniqueness of the subgame equilibrium for MSPs in Problem 2 can be guaranteed,

i.e., each MSP has an optimal and unique bidding strategy (Q∗
� , F

∗
� ) for the bids of model quality and freshness.

Proof. We present the Hessian matrix of Ψ� (Q � , F � ) with respect to bidding strategies Q � as

� (Ψ� ) =



�2Ψ�

�Q2
�

�2Ψ�

�Q � �F �

�2Ψ�

�F � �Q �

�2Ψ�

�F2
�


= ����(�

�
� � , �

�
� � ), (24)

and

�
�
� � =

[
�2Ψ� (Q � ,F � )

��� � ���′ �

]
�,�

′
∈{1,2,...,� }

= −����(ℎ
�
�1, ℎ

�
�2, . . . ℎ

�
� � ) < 0, (25)

where

ℎ
�
� � =

�
�
� �

�� �
+
(
∑�
�′,�′≠� ��′ � ) +

∑�
�′,�′≠� ��′ �

(�� � +
∑�
�′,�′≠� ��′ � )

3
. (26)

It is clear that �
�
� � is negative deinite. Then, we derive the second derivative of Ψ� (Q � , F � ) with respect to F � as

� �
� � =

[
�2Ψ� (Q � ,F � )

��� � ���′ �

]
�,�′∈{1,2,...,� }

= −����(ℎ
�
�1, ℎ

�
�2, . . . ℎ

�
� � ) < 0, (27)

where

ℎ
�
� � =

�
�
� �

�� �
+
(
∑�
�′,�′≠� ��′ � ) +

∑�
�′,�′≠� ��′ �

(�� � +
∑�
�′,�′≠� ��′ � )

3
. (28)

We can easily derive that � �
� � is negative deinite, and thus � (Ψ� ) is negative deinite and Ψ� (Q � , F � ) is concave.

Therefore, it can be proved that Problem 2 has a unique optimal solution (Q∗
� , F

∗
� ). By taking the irst-order

ACM Trans. Multimedia Comput. Commun. Appl.



A Privacy-preserving Auction Mechanism for Learning Model as an NFT in Blockchain-Driven Metaverse • 13
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Fig. 3. The structure of HMM assisted IISG for FL-NFT auction in the blockchain-driven Metaverse.

partial derivative of Ψ� (Q � , F � ), we obtain the equilibrium solution as

(Q∗
� , F

∗
� ) = [(

√√√√√ Δ
2
� + Δ�

(
��

∗

�

)�
+ 1

− Δ�,

√√√
Δ
2
�
+ Δ�

��
∗

� + 1
− Δ� )], (29)

where {
Δ� =

∑�
�′,�′≠� ��′ �

Δ� =
∑�
�′,�′≠� ��′ �

. (30)

So far, we verify the existence and uniqueness of Stackelberg equilibrium in Problem 1 and 2, indicating

that every MSP has a unique optimal solution of the bidding strategy to maximize its utilities given the training

strategies of MUs. Therefore, the Stackelberg equilibrium can be achieved in the proposed auction game model

through Theorem 1 and 2. Both MUs and MSPs can derive their optimal training strategies (K∗
� , E

∗
� )and bidding

strategies (Q∗
� , F

∗
� ), respectively, and none of them tends to adjust their strategies to gain higher utilities.

5 PRIVACY-PRESERVING MULTI-WINNER SEALED-BID AUCTION MECHANISM

According to the Stackelberg equilibrium proved in Section 4, it is possible to obtain an optimal solution to

optimize the training strategies of MUs and bidding strategies of MSPs in IISG. However, the stable Stackelberg

equilibrium faces the following challenges practically. 1) MSPs who demand FL-NFT are averse to disclosing their

actual bids to competitors due to the non-cooperative relationship. 2) MSPs are unable to predict the bidding

strategies of competitors in IISG accurately. 3) The public goods attribute of FL-NFT may cause insuicient

fairness in the single-side auction mechanism, such as British and Dutch auctions. To address the above challenges,

we formulate a privacy-preserving multi-winner sealed-bid auction mechanism (PMS-AM) to determine the

winning MSPs, where each MSP acts as the individual agent to predict the bidding strategies of competitors by

HMM.

5.1 MSP bid prediction based on HMM

In an FL-NFT auction market, the MSPs as bidders are independent and competitive, and they are reluctant to

disclose their real bids to competitors generally. In order to build a privacy-preserving auction mechanism, HMM

[2] is adopted to predict bids of competitors, in which the historical bidding sequence recorded in blockchain can

be used to predict the bids of MSPs. The structure of HMM-assisted IISG for FL-NFT auction in the blockchain-

driven Metaverse is shown in Fig. 3. Speciically, HMM assists MSPs in computing the beneits from the auction,
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where historical bidding strategies of MSPs are recorded on the distributed ledger transparently. In Stage I of IISG,

MSPs can determine their subsequent bidding strategies according to the predicted bids of other competitors

and their satisfaction with FL-NFT. In Stage II of IISG, MUs can adjust their training strategies according to the

bidding reward from MSPs to maximize utilities.

In IISG, MSPs need to compute their winning probability to evaluate the auction beneit. The HMM can assist

MSP � � in predicting the bids of competitors. In order to simplify the analysis, we combine the model quality

bid � � and freshness bid �� into one symbol � � for description. For any MSP � � , HMM can be described by a

5-tuple:< Ω� ,Ω� , � , �, � >, including two inite state sets, i.e., state set Ω� and observation set Ω� , and three

probability matrices, i.e., � , �, �.

• Ω� = {�1, �2, . . . , �� } is the inite state bids set oferd by MSP � � within game decision period � , where ��
presents the bids ofered by MSP � � for FL-NFT�

∗ in the �-round game decision.

• Ω� = {�1, �2, . . . , �� } is a sequence of � historical observation bids of MSPs, where �� is derived from

historical bids recorded on blockchain at time � .

• � = {�1, �2, . . . , �� }, is the initial state probability distribution over states Ω� , and each �� is the probability

that Markov chain start from bid �� . Some state �� may have �� = 0, meaning that �� cannot be the initial

states.

• � = {�11, . . . , �� � , . . . , ��� }, where �� � = � (��+1 = � � |�� = �� ) is the transition probability matrix, each �� �
is the probability of moving from bid �� to bid � � , which satisies

∑�
�=1 �� � = 1,∀� .

• � = {�1 (�1), . . . , �� (�� ), . . . , �� (�� )} is a sequence of observation likelihoods or emission probabilities, and

�� (�� ) = � (�� = �� |�� = �� ) denotes the probability of an observation �� being generated from a state �� .

In the proposed auction model, Ω� and Ω� are independent and � (�� = �� ) > 0 is satisied. We can obtain the

following conditional probability as

� (��+1 = � � |��+1 = ��+1) =
�{��+1 = � � ,��+1 = ��+1}

� (��+1 = ��+1)
. (31)

Let �{��+1 = � � ,��+1 = ��+1} = ��+1 (� � , ��+1). We can derive the likelihood of bid � � given the observation ��+1
by Eq.(32) according to the forward algorithm [56].

��+1 (� � , ��+1) = � (� � |��+1)
︁

�� ∈�

��+1 (� � , ��+1)

=

︁

�� ∈�

� (�� = �� ,�� = �� , ��+1 = � � ,��+1 = ��+1)

=

︁

�� ∈�

�� (� � , �� )�{��+1 = � � |�� = �� }�{��+1 = ��+1 |��+1 = � � }.

(32)

Substituting �{��+1 = � � |�� = �� } = �� � and �{��+1 = ��+1 |��+1 = �� } = �� (��+1) into Eq.(32) we have

��+1 (� � , ��+1) =
︁

�� ∈�

�� (�� , �� )�� ��� (��+1). (33)

Therefore, MSPs can obtain the probability of all the possible bids ofered by the competitors and determine

the maximum probability �� to compute the winning probability. In our work, MSPs operate HMM based on the

record in blockchain to predict bids of competitors and construct the imperfect information Stackelberg game

(IISG) to optimize bidding strategies. This determines that the auction process protects the privacy of bidding

information under the current auction market state and achieves the Stackelberg equilibrium.
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5.2 Multi-Winner and Payment Scheme Determination

We investigate the two-side online auction interactions among MU-DAOs and MSPs in the blockchain-driven

Metaverse, explicitly taking the public goods7 of FL-NFT into account. The proposed PMS-AM deines a multi-

winner determination and a payment scheme based on McAfee’s double auction [35] and second price auction

to achieve individual rationality and incentive compatibility. To minimize the risk of privacy disclosure in the

process of FL-NFT auction, MSPs can ofer encrypted bidding information to the auctioneer (i.e., auction smart

contract). After digital signature veriication, the auctioneer decrypts the information with a private key and

determines the auction results.

In an FL-NFT auction market, we suppose that there are multiple sellers (i.e., MU-DAOs), denoted by U� =

{� �1 ,�
�
2 , . . . ,�

�
�
} and multiple buyers (i.e., MSPs), denoted by P� = {��1 , �

�
2 , . . . , �

�
�
}. Diferent MU-DAOs are

responsible for minting diferent FL-NFTs F = {�1, �2, . . . , �� }. The FL-NFT auction mechanism PMS-AM

=< U� ,P�, F> is composed of MU-DAO space U� , MSP space P� , FL-NFT space F . For any MU �� ∈ � �
ℎ

participate in the FL-NFT �ℎ minting task, the training strategies A��
∆
=< K� , E� > contains the numbers of local

iterations K� and privacy budget E� , all of which are adjusted to realize the utility Φ� maximization in Stage II of

IISG. Meanwhile, MSP � � bidding for �ℎ chooses an optimal bidding strategy A
�
�

∆
=< Q � , F � >, which contains

model quality bid Q � and model freshness bid F � , to maximize their utility Ψ� in the stage I of IISG. After multiple

rounds of strategy optimization, the PMS-AM allows MU-DAOs and MSPs to determine a reasonable clearing

price of FL-NFT, which consists of the following three phases:

1) MU-DAO bid voting

In the FL-NFT �ℎ minting process, we suppose the MU-DAO � �
ℎ
recruits all candidate MUs with surplus

resources to train the FL global model. Considering the public goods nature of FL-NFT, the reasonable price of

�ℎ is diicult to determine by uniform direct pricing. Therefore, we apply the widely adopted majority voting

scheme [16] to express the diversiied price preferences of MUs for �ℎ . Speciically, MUs in � �
ℎ
can report an

asking bid proposal of �ℎ , formed as a bid set B�
ℎ
= {��1 , �

�
2 , . . . , �

�
�
} according to their expected beneits denoted

in Eq.(13). Then,� �
ℎ
executes bid voting for each�� ’s reported bid with majority agreement from the remaining

MUs, denoted as ���′
∆
= {0, 1} 8. The MU-DAO retains the asking bids supported by more than half of the MUs. If

more than half of MUs in MU-DAO approve the ��� ,�� will receive a consistency beneit ��� =
∑�
�=1 �� � , otherwise,

��� = 0. Note that �� � is only broadcast in the private network of MU-DAO. Therefore, MSPs cannot retrieve the

bidding proposal information of MUs. More speciically,

��� =

{∑�
�=1 �� � , � �

∑�
�′=1 �

�
�′ ≥

�
2 ,∀�

′
≠ �,

0, � �
∑�
�′=1 �

�
�′ <

�
2 ,∀�

′
≠ � .

(34)

After all MUs complete the bid voting, the�ℎ determines the asking price of �ℎ , which is marked as �ℎ =
∑�
�=1 �

�
� .

2) Grouping and matching

The FL-NFT auction market is constructed by a blockchain-based decentralization platform, where a smart

contract as auctioneer broadcasts the relevant information of FL-NFT, including ownership, asking bid and

service content keywords, etc., to MSPs registered on the platform. The auction smart contract matches the

MSPs with the FL-NFTs owned by diferent MU-DAOs based on the required sequence. Suppose a grouping

algorithm is executed to generate an FL-NFT seller group set G� and a buyer group set G� . When a seller group

g�� ∈ G� satisies the requirement of buyers in group g�� ∈ G� , � is denoted the matching relationship, we have

7In economics, a public good is a good that is both non-excludable and non-rivalrous.
8If��′ approve of the asking bid of�� , then �

�
�′

= 1, otherwise ��
�′

= 0.

ACM Trans. Multimedia Comput. Commun. Appl.



16 • Qinnan Zhang and Zehui Xiong et al.

� (g�� ) = g�� and � (g
�
� ) = g�� . If the number of successfully matched sellers and buyer groups is � , then we have

� ≤ ���{|G� | , |G� |}.

3) Double auction

In the FL-NFT auction market, MSPs and MU-DAOs can be viewed as independent buyers and sellers, respec-

tively. McAfee’s double auction mechanism [2] can be leveraged by the auction smart contract to determine

multi-winner and payment schemes in a distributed manner based on blockchain.

a) Bids sorting: The auction smart contract sorts bids of matched seller group g�� in increasing order, and sorts

bids of matched buyer group g�� in descending order as follows:

���1 ≤ �
�
�2 ≤ · · · ≤ ���� , (35a)

���1 ≥ �
�
�2 ≥ · · · ≥ ���� . (35b)

b) Winners determination: The winners are determined by inding the largest � that satisies ��
��

≥ ��
��
from

the two bids order, then the irst � MSPs are added into the candidate winner sets g
� (� )
� . The MU-DAO with

the smallest sell-bid wins. If g
� (� )
� = ∅, the MSPs and MU-DAOs need to ofer new bids until the auction clock

expires.

c) Pricing of FL-NFT: In order to encourage bidders to ofer more realistic and truthful bids, we adopt the

second-price auction to price the FL-NFT. In particular, the winning MU-DAO gets the next smallest sell bid as

the price of FL-NFT. The winning MSPs give the next largest buy-bid to get the access right of FL-NFT �ℎ . Note

that the higher the bid is, the higher the access priority of FL-NFT can be given. The price diference between the

next largest buy-bid and the next smallest sell-bid is the proit of the auctioneer (i.e., auction smart contract). The

MU�� in winning MU-DAO can share the beneit according to its bid voting result, denoted by Eq.(34).

In practical trading scenario, the minting and auction process of FL-NFT involves primarymarket and secondary

market. Speciically, FL-NFT can be minted and issued in primary market and then enters into the secondary

market to perform circulation trading. As the most popular NFT secondary market, OpenSea supports three types

of NFT pricing mechanisms, including direct pricing, auction, and package selling. Considering the characteristics

of FL-NFT, we investigate the two-sided online auction interactions among sellers (i.e., MU-DAOs) and buyers

(i.e., MSPs). In the FL-NFT minting process, MUs are motivated to participate in a decentralized autonomous

organization (i.e., MU-DAO) to aggregate local models and mint FL-NFT. Due to the heterogeneity of MUs, we

proposed PMS-AM to support MUs in expressing diversiied price preferences and giving selling bids by majority

voting agreement. Indeed, the price ofered by MSPs will afect the auction result. In this regard, we formulate

a classic McAfee’s double auction mechanism to determine the winning MSPs, and a second-price auction is

adopted to give the inal price of FL-NFT. The auction result depends on the bids ofered by MSPs and McAfee’s

double auction rules, which guarantee both the IR and IC property.

5.3 Economic properties Analysis

To ensure the efectiveness of the proposed PMS-AM, we analyze the following key economic properties, including

individual rationality, incentive compatibility and budget balance.

Theorem 3. The proposed PMS-AM scheme achieves individual rationality (IR).

Proof. For each MU�� ∈ U, by observing the utility function in Eq.(14) and the constraint �1 in Eq.(15) we

have Φ� =
∑�
�=1 �� �

(
ℎ
(
�� �

)
+ ℎ

(
�� �

) )
−�� ≥ 0. Thus, for each MU�� ∈ U, the utility Φ� ≥ 0.
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MU-DAOMetaverse service Ethereum test 

network (Ropsten) 

Fig. 4. The simulation scenario of MU-DAO is based on 10 tracepoints of Roblox Metaverse users.

For each MSP � � ∈ P, it will win the auction only when�
�
� � = �

�
� � = 1. According to McAfee’s double auction,

the bids of winners satisfy �� � + �� � ≥ �� � . By combining the constraint �1 in Eq.(17) we have

Ψ� =

�︁

�=1

(
�� � + �� � − �� �

)
≥ 0. (36)

Thus, for each MSP � � ∈ P, the utility Ψ� ≥ 0. So, the proposed PMS-AM scheme achieves incentive rationality.

Theorem 4. The proposed PMS-AM scheme achieves incentive compatibility (IC).

Proof. In the phase of FL-NFT minting, the MUs optimal their training strategies A��
∆
=< K� , E� > and MSPs

optimal their bidding strategies A��
∆
=< Q � , F � > based on IISG. The sell-bids and buy-bids ofered by the MU-

DAOs and MSPs are based on their true evaluation of FL-NFT value because of the payment scheme based on the

second price auction. In the PMS-AM, for each MSP � � , it satisies � (Ψ� (Q
∗
� , F

∗
� )) ≥ � (Ψ� (Q � , F � )), and for each

MU�� it satisies � (Φ�
(
K∗
� , E

∗
�

)
) ≥ � (Φ� (K� , E� )). Given a clearing price of FL-NFT, each buyer � � ∈ P and seller

�� ∈ U cannot improve their utilities by submitting untruthful bids. So, the proposed PMS-AM scheme achieves

incentive compatibility.

Lemma 1. The proposed PMS-AM scheme achieves budget balance.

Proof. The utilities of all MUs and MSPs are positive according to Theorem 3. Then, the budget is the sum of

the utilities of all MSPs
∑�
�=1 Ψ� ≥ 0. By combining the constraint �1 in Eq.(15) and McAfee’s double auction, we

have the proit of the auctioneer non-negative. So, the proposed PMS-AM achieves a budget balance.

6 SIMULATION AND EVALUATION

In this section, we conduct experimental simulations to evaluate the convergence performance of FL-NFT and

verify the efectiveness of our proposed PMS-AM. We irst compare the test accuracy of FL-NFT with four

baselines regarding diferent learning training strategies. Then, we evaluate the efect of the auction and incentive,

including the cost and utility of MU-DAO. Finally, we statistic the average FL-NFT minting time for MU-DAO

completing PMS-AM.

6.1 Simulation Setings

• Setup: We simulate an MU-DAO by recruiting 10 MUs to participate in FL-NFT training and minting. We

deine a 1000� × 1200� area as a simulation scenario, in which 10 tracepoints of Roblox MUs are deployed.

The tracepoints of Roblox are plotted by the matplotlib map toolkit and the simulation scenario as shown

in Fig. 4.

• Environment: We implement PMS-AM on a server with an Apple M1 chip of 8-core CPU and 8GB RAM,

and land in macOS Big Sur v11.5.2 operating system with Python v3.6.10 and PyTorch v0.4.1. We use a
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Table 2. Experimental Parameter Setings

Parameters Value

Number of MUs � = 10

Number of MSPs � = 5

SGD momentum M� = 0.5

Total budget of MSPs � � = 1000

Model utility parameters �1 = 10, �2 = 2

Model training parameters �� = 0.01, �� = 64, �0� = 5

CPU clock frequency of MUs �� ∈ [3, 5]GHz

Privacy budget of MUs �� ∈ [1, 5]

Game decision period � = 10�

Regulatory factor � = 0.3, � = 0.5, �� = 0.5, �� = 8

crypto wallet (i.e., MetaMask9) to realize a blockchain-based auction smart contract, in which the auction

transaction can be recorded on Ethereum test network Ropsten10, in which proof-of-work (PoW) is used

for consensus and users can hold RopstenETH for purchase of FL-NFT.

• Datasets: Under the simulation scenario, the MNIST [25] and CIFAR-10 [23] datasets are divided equally

into 10 MUs. The MNIST dataset D� contains 60000 handwriting grayscale images from 1 to 10. The

CIFAR-10 dataset D� consists of 60000 color images into 10 classes. Both MNIST and CIFAR-10 datasets

are divided into two sets: 50000 randomly selected training samples and the rest 10000 test samples.

• Models: The neural networks select multi-layer perceptron (MLP) [39] and convolutional neural networks

(CNN) [14] for model training, which can be aggregated by FedAvg [29] to update the model parameters.

Each MU executes the mini-batch stochastic gradient descent algorithm [36] to optimize the local model

and complete the cooperative training within MU-DAO. Both models use the rectiied linear unit (ReLU)

activation function.

Under the PMS-AM for FL-NFT designed in this paper, the convergence of the FL model quality at the same

setting is compared. We adjust hyper-parameters for all datasets and models to the best result among 5 runs. All

experiments are conducted based on a lightweight FL open source framework11 as the benchmark, which sets the

clients to participate in FL randomly. The speciic experimental parameter settings are shown in Table 2.

6.2 Results and Analysis

In this experimental simulation, we mainly focus on three metrics in the FL-NFT auction process, including

• The quality of FL-NFT: the test accuracy of FL-NFT based on MLP-MNIST, MLP-CIFAR-10, CNN-MNIST,

and CNN-CIFAR-10. Every independent MU can organize MU-DAO voluntarily for FL-NFT minting.

• The cost of MU-DAO: includes the computation cost and privacy cost of MU-DAO recruiting 10 MUs to

perform local model training, which can be calculated by Eq.(5).

• The utility of MU-DAO : is calculated by the received reward from the MSP bids and the cost of FL-NFT

minting. The calculation equation is shown in Eq.(14).

1) The quality of FL-NFT

As described above, in each epoch of PMS-AM, MUs need to adjust the training strategies (i.e., local iterations

and privacy budget) with diferent auction bids to maximize the social welfare of an open Metaverse model

marketplace. In fact, none of the existing work has considered the same scenario as our work. Inspired by [27], we

9https://metamask.io/
10https://ropsten.etherscan.io/
11https://github.com/shaoxiongji/federated-learning
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employ four common training strategies as the baselines, including centralized learning, random-FL, loss-based

and gradient-norm. We make comparisons with four baselines under MLP and CNN with MNIST and CIFAR-10

datasets as shown in Fig. 5. In PMS-AM, MUs can adjust the training strategies to organize MU-DAO voluntarily

for FL-NFT minting based on the results of IISG. Centralized learning is the selected benchmark scheme. The

other three baselines are state-of-the-art decentralized training strategies [27], including random-FL, loss-based

and gradient-norm, respectively.

As shown in Fig. 5, when the total budget � = 5, 000, the centralized learning scheme achieves the highest test

accuracy, as all data are collected by a centralized server for model training. Furthermore, in the decentralized

training strategies, PMS-AM achieves the highest test accuracy, in which MUs could make the utmost of the

rewards to train the local model and are encouraged to choose a privacy budget with a relatively weak perturbation

level on the gradient. Speciically, Fig. 5(a) presents the convergence performance in terms of test accuracy for the

MLP model under MNIST dataset D� assigned to 10 MUs, in which the FL-NFT aggregates 100 epochs through

FedAvg algorithm. We would like to highlight that our proposed PMS-AM scheme signiicantly outperforms the

other three decentralized training strategies. We inspect another model (i.e., CNN) and dataset (i.e., CIFAR-10) in

Fig. 5(b), Fig. 5(c), and Fig. 5(d), from which we could observe consistent results as Fig. 5(a).

The reason behind it is that the training strategies, including local iterations and privacy budget, can be

dynamically adjusted according to the costs and utility of MUs in our PMS-AM. As a result, the MUs are

encouraged to allocate resources reasonably to provide more high-quality models. Some luctuations are normal

for the diferent models and datasets for model training. As expected, lower test accuracy is achieved in the

CIFAR-10 dataset for both models and under diferent datasets. It can be seen that the test accuracy of random-FL

is the lowest, as MUs randomly adjust training strategies regardless of diferent cost and utility situations.

2) Cost and Utility of MU-DAO

We present the average cost and utility of MU-DAO under four decentralized training strategies in Fig. 6. In

this simulation, we assume that the MU-DAO recruits 10 MUs to mint FL-NFT. The coniguration of the CPU

clock frequency �� for each MU is randomly generated from the range [3, 5]GHz, and the privacy budget �� of each

MU is randomly generated from the range [1, 5]. We have the following observations. Under four decentralized

training strategies, MU-DAO could achieve non-negative utility, validating the IR property. As expected, the

highest average utility is achieved in our PMS-AM scheme, as MSPs could change bidding strategies (i.e., diferent

bids for model quality and freshness) under a ixed total budget of � = 5, 000. In particular, MU-DAO needs

higher costs under the CNN model, as in this case, the MUs occupy more computing resources to complete

FL-NFT minting. Under the same model, however, MU-DAO with CIFAR-10 dataset consumes higher costs, while

random-FL consumes the lowest cost. The reason is mainly the training cost variance among diferent models,

datasets and training strategies.

3) The time of FL-NFT minting

We simulate the process of blockchain-based FL-NFT minting under an Ethereum test network Ropsten. The

time of FL-NFT minting includes the FL model training time and blockchain consensus time. The numerical results

of the time of FL-NFT minting (i.e., latency) with four diferent schemes are statistics in table 3. As indicated by

the results in table 3, the time of FL-NFT minting with PMS-AM requires more time to complete model training

and minting. This is because MUs are incentivized to adjust their training strategies to maximize utility according

to the bidding strategies, which increases the time of game decision. The target is to improve the quality of

FL-NFT and the utility of stockholders. As the simulation dataset, CIFAR-10 has 60,000 32× 32 color images, while

MNIST has 60,000 28 × 28 grayscale images. Due to diferent sample sizes, FL-NFT minting time is longer under

the CIFAR-10 for CNN and MLP models than MNIST. The minting time only represents the comparison trend

under diferent models and datasets, which may vary under diferent devices. From the current numerical results,

we can see that model training and blockchain consensus are both time-consuming tasks, thereby optimizing this

scheme from these two aspects need to be explored in the future.

ACM Trans. Multimedia Comput. Commun. Appl.



20 • Qinnan Zhang and Zehui Xiong et al.

10 20 30 40 50 60 70 80 90 100

FL Global Model Epochs

88

90

92

94

96

98

100

T
e
s
t 
a
c
c
u
ra

c
y
 o

f 
F

L
-N

F
T

  
(%

)
Centralized, MLP, MNIST

Our PMS-AM, MLP, MNIST

Loss-based, MLP, MNIST

Gradient-norm, MLP, MNIST

Random-FL, MLP, MNIST

(a) MLP, MNIST

10 20 30 40 50 60 70 80 90 100

FL Global Model Epochs

35

40

45

50

55

60

65

70

T
e
s
t 
a
c
c
u
ra

c
y
 o

f 
F

L
-N

F
T

  
(%

)

Centralized, MLP, CIFAR-10

Our PMS-AM, MLP, CIFAR-10

Loss-based, MLP, CIFAR-10

Gradient-norm, MLP, CIFAR-10

Random-FL, MLP, CIFAR-10

(b) MLP, CIFAR-10

10 20 30 40 50 60 70 80 90 100

FL Global Model Epochs

82

84

86

88

90

92

94

96

98

100

T
e
s
t 
a
c
c
u
ra

c
y
 o

f 
F

L
-N

F
T

  
(%

)

Centralized, CNN, MNIST

Our PMS-AM, CNN, MNIST

Loss-based, CNN, MNIST

Gradient-norm, CNN, MNIST

Random-FL, CNN, MNIST

(c) CNN, MNIST

10 20 30 40 50 60 70 80 90 100

FL Global Model Epochs

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y
 o

f 
F

L
-N

F
T

  
(%

)

Centralized, CNN, CIFAR-10

Our PMS-AM, CNN, CIFAR-10

Loss-based, CNN, CIFAR-10

Gradient-norm, CNN, CIFAR-10

Random-FL, CNN, CIFAR-10

(d) CNN, CIFAR-10

Fig. 5. Comparison of test accuracy of FL-NFT under MLP and CNN with MNIST and CIFAR-10 datasets among the five

schemes
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Fig. 6. Comparison of the average cost and utility of MU-DAO among four decentralized schemes (Number of MU � = 10).

7 CONCLUSION

In this work, we propose an efective FL-NFT minting scheme and privacy-preserving multi-winner sealed-bid

auction mechanism (PMS-AM) for FL-NFT in the blockchain-driven Metaverse. Speciically, we establish a

decentralized autonomous organization MU-DAO to train the FL global model collaboratively, which can be

minted into a novel FL-NFT to control its ownership. The imperfect information Stackelberg game (IISG) is

ACM Trans. Multimedia Comput. Commun. Appl.



A Privacy-preserving Auction Mechanism for Learning Model as an NFT in Blockchain-Driven Metaverse • 21

Table 3. Comparison of the time for FL-NFT minting among four decentralized schemes (s)

Scheme name MLP-MNIST MLP-CIFAR10 CNN-MNIST CNN-CIFAR10

Random-FL 732.82 1361.68 1036.65 8996.30

Loss-base 1651.02 2381.62 1960.53 15086.63

Gradient-norm 1651.44 2336.94 1846.89 14993.67

PMS-AM 2184.85 2863.34 2498.34 16226.34

adopted to model the interactions among MUs and MSPs under the FL cost-beneit framework to maximize

their utility, in which the backward induction is adopted to solve the equilibrium solution. We combine the

double auction and second price auction to determine the winning bidders and the price of FL-NFT, which can be

implemented by blockchain-based auction smart contracts to achieve autonomous execution. Numerical results

by simulation present that the quality of FL-NFT can be increased compared with the other three schemes. In the

future, we plan to enhance the performance and fairness of the auction mechanism and explore its lexibility and

efectiveness in practical application scenarios.
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