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The Metaverse, envisioned as the next-generation Internet, will be constructed via twining a practical world in a virtual
form, wherein Meterverse service providers (MSPs) are required to collect massive data from Meterverse users (MUs). In this
regard, a critical demand exists for MSPs to motivate MUs to contribute computing resources and data while preserving user
privacy. Federated learning (FL), as a privacy-preserving collaborative machine learning paradigm, can support distributed
intensive computation in Metaverse. In this work, we first investigate minting the machine learning models into NFT with FL
assistance (referred to as FL-NFT), such that MUs as stakeholders can control the ownership and share the economic value of
user-generated content (UGC). Specifically, MUs are encouraged to establish a decentralized autonomous organization (i.e.,
MU-DAO) to aggregate local models and mint FL-NFT. MUs and MSPs optimize the strategies by formulating an imperfect
information Stackelberg game (IISG) to trade off the cost and benefit. We apply the backward induction to derive the
equilibrium solution. Then, we construct a privacy-preserving multi-winner sealed-bid auction mechanism (PMS-AM), in
which the Hidden Markov Model (HMM) assists MSPs in choosing rational bidding strategies according to historical bids,
and the double auction mechanism determines the winners and price of FL-NFT. Finally, the numerical results based on
theoretical analysis and simulations demonstrate that the proposed PMS-AM can increase the quality of FL-NFT and achieve
the economic properties of incentive mechanisms such as individual rationality and incentive compatibility.

CCS Concepts: » Theory of computation — Algorithmic game theory and mechanism design; Market equilibria.
Additional Key Words and Phrases: Metaverse, blockchain, federated learning, NFT, auction mechanism, Stackelberg game,
HMM

1 INTRODUCTION

The rapid development of emerging communication and multimedia technologies, such as beyond 5G/6G,
augmented reality (AR), virtual reality (VR), mixed reality (MR) and the tactile internet (TI) make it possible for
users to immerse in various Metaverse services physically [26], including entertainment [21], visual campus [8],
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healthcare [57], e-commerce [17], smart city [24], and digital twin (DT) [50], etc. In 1992, the word "Metaverse"
first appeared in the science fiction Snow Crash of Neal Stephenson [19]. In 2021, Facebook was even rebranded
as "Meta", which brought the Metaverse back to cutting-edge discussions. Many lite Metaverse games, such
as Roblox and Fortnite, have been pursued by extensive users. Some technology giants have been involved in
Metaverse services, including Microsoft, Apple, Google, Tencent, Baidu, etc. Microsoft partner has proposed a new
MR solution called HoloLens [15] for training, learning, and work. Google is also introducing immersive views
and the geospatial API for Google Maps that could support the AR experience. Although increasing Metaverse
services are emerging, it is still far from the ultimate Metaverse with the feature of immersion, embodiment,
universality, and interoperability [53]. In the upcoming Web 3.0, Metaverse can provide a decentralized immersive
virtual world, where Metaverse users (MUs) as stakeholders will be able to build the autonomous ecosystem and
share the economic value.

In Metaverse services, the MUs can play as avatars immersing in the 3-dimensional (3D) virtual world by
accessing the seamless Metaverse service developed by various Metaverse service providers (MSPs). In order
to support real-time and immersive experiences for MUs, intensive rendering computation and low-latency
communication are required. For example, there are many MUs with viewpoint changing dynamically, in which
the tiled video [7] needs to be rendered in real-time. Assisted by edge computing, the rendering tasks can be
offloaded to VR devices at edge networks to reduce the communication delay significantly, especially for some
delay-sensitive tasks (e.g., VR viewpoint prediction). Moreover, the forecast pixels that are watched can be
transmitted ahead of time, so the tiling of VR video saves bandwidth and reduces transmission delay significantly
[53]. However, there is still resource overhead and risk of privacy disclosure, thereby an incentive mechanism
needs to be designed to subsidize the participating cost of MUs.

1.1 Research Motivation

The ecosystem established by MUs has recently become a promising topic for driving innovations toward Meta-
verse applications. Blockchain-driven Metaverse has recently attracted extensive attention due to its decentralized
characteristics, where autonomous ecosystems based on blockchain bring feasible infrastructure to enable the
decentralized Metaverse. The ubiquitous Metaverse services require a decentralized autonomous ecosystem to
address the critical issue of monopolists and dictators in the Metaverse. MUs, as essential stakeholders, need to
get benefit from this ecosystem, in which they can create a large number of user-generated content (UGC) (e.g.,
avatar models).

Federated learning (FL) [22] as a privacy-preserving collaborative machine learning paradigm [43] can be used
to organize MUs to facilitate the creation of UGC in the form of FL global models (i.e., FL-NFTs), which can
support intensive computation by collective efforts. In fact, the decentralized federated learning marketplace
is a huge industry with good business prospects. There is an assured demand for companies to buy and sell
valuable learning models through a service interface, including finance, healthcare, map navigation, etc. There
are some real-world data marketplaces, like Dawex!, Lotame?, and Oracle BlueKai®. For example, Dawex builds a
trusted Al marketplace to support Al model providers, data providers and Al model users conducting Al-data
transactions. In this regard, federated learning as a distributed machine learning paradigm can transform data
without getting access to the raw data.

In edge-enabled Metaverse, obtaining a high-quality FL model requires all participant MUs to exert enough
effort, such as CPU, storage, and bandwidth resources. Although the models can be trained when the computation
resources are idle, achieving effective and fair FL in the Metaverse is still practically impossible without reasonable

https://www.dawex.com/en/news/making-ai-promise-reality-with-ai-marketplaces/
Zhttps://www.lotame.com/
3https://www.oracle.com/cx/marketing/data-management-platform/
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Fig. 1. Metaverse service providers bid for FL-NFT by auction smart contract from MU-DAO.

incentive mechanisms. A few incentive mechanisms for FL have been proposed, but they are not directly applicable
in the Metaverse scenario. In this paper, we are particularly interested in studying an incentive mechanism
to encourage MUs to participate in a decentralized autonomous organization (i.e., MU-DAO) to mint FL-NFT
cooperatively. There are still some critical challenges to be dealt with, as described below.
C1. How to trade off the cost and benefit of MUs in the process of FL-NFT minting based on blockchain?
C2. How to determine a reasonable price of FL-NFT to realize individual rationality and market equilibria?

1.2 Our Contributions

To mitigate the above critical challenges, we introduce a privacy-preserving multi-winner sealed-bid auction
mechanism (PMS-AM) to assist MSPs in bidding for the FL-NFT, as shown in Fig. 1. Specifically, MUs are
encouraged to establish a decentralized autonomous organization MU-DAO to train FL local models and aggregate
global models, which can be minted into Non-Fungible Tokens (i.e., FL-NFT). A blockchain-based auction smart
contract as the auctioneer determines multiple winners according to bids of MSPs, where the higher the bid and
the priority with accessing FL-NFT can be released until the auction clock expires. We extend the double auction
mechanism for FL-NFT based on our previous work [41]. The main contributions of this paper are summarized
as follows:

e We investigate minting the federated learning models into NFT (i.e., FL-NFT), encouraging MUs as stake-
holders to participate in FL. model minting and share the economic value. In order to mitigate the issue of
monopolists and dictators in Metaverse, participating MUs establish a decentralized autonomous organiza-
tion MU-DAO to train the FL global model collaboratively and mint it to an FL-NFT.

o Considering the instability of the auction market, we formulate the imperfect information Stackelberg
game (IISG) to optimize the training strategies of MUs and the bidding strategies of MSPs, which realizes
utility maximization and individual rationality. We adopt the backward induction to derive the equilibrium
solution and prove the existence and uniqueness of the Stackelberg equilibrium.

o In order to price FL-NFT reasonably, a privacy-preserving multi-winner sealed-bid auction mechanism
(PMS-AM) is proposed, where the auction smart contract acts as auctioneer to manage and control the
trading of the FL-NFT in a distributed manner. The Hidden Markov Model (HMM) is utilized to assist
MSPs in choosing rational bidding strategies. We conduct some simulations to validate the effectiveness of
PMS-AM.

The remainder of this paper is organized as follows. In Section 2, we review related works and drawbacks.
Section 3 presents the FL-NFT auction model and FL cost-benefit framework. Section 4 gives the strategies
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optimization of MUs and MSPs based on the IISG. In Section 5, the auction process of FL-NFT by PMS-AM is
proposed. We conduct simulations and present the numerical results in Section 6. Finally, we conclude the paper
in Section 7.

2 RELATED WORK

In this section, we briefly review the related research about auction and incentive mechanisms that can be used
in Metaverse. We then discuss the role of blockchain and federated learning in Metaverse.

2.1 Auction and Incentive Mechanism in Metaverse

In Metaverse service, UGC refers to a form of different digital content generated by MUs’ contribution, which
contains personal privacy data and potential economic value. For blockchain-driven Metaverse, there are surging
need for UGC to share its economic value among all stakeholders. Some researchers have focused on incentive
and auction mechanisms for generating UGC. Xu et al. [54] designed a deep reinforcement learning (DRL)-based
incentive mechanism for VR service in the wireless edge computation empowered Metaverse, in which a double
Dutch auction mechanism is adopted to determine bidding strategies and allocation schemes of VR services.
Jiang et al. [18] adopted the Coded Distributed Computing (CDC) scheme to support rendering computation
in Metaverse services, where a hierarchical structure composed of a coalition game and Stackelberg game was
designed to choose reliable workers to participate in the rendering tasks. Sun et al. [46] investigated dynamic
digital twin (DT) and formulated a two-stage Stackelberg game to incentive users to participate in aerial-assisted
Internet of Vehicles (IoV). Lin et al. [30] proposed an incentive-based congestion control scheme for Digital
Twin Edge Networks (DTENS), in which the Lyapunov optimization theory [3] was adopted to decompose the
long-term control decision into a series of online associate decisions.

Without a reasonable incentive mechanism, MUs are unwilling to contribute computation and data resources
to participate in Metaverse service computing under the risk of privacy disclosure. Many existing incentive
mechanisms of Metaverse focus on the resource allocation rules, while they lose sight of the economic value
contained in UGC and the nature of public goods [44]. The auction mechanism is designed to stimulate buyers to
bid their actual valuations for UGC ownership, but the potential risks of decision privacy lead to an unfair auction
market. Wang et al. [48] proposed a privacy-preserving and truthful double auction mechanism PS-TAHES
based on additive homomorphic encryption [38] to prevent personal privacy information leakage in the auction.
However, research on incentive mechanisms in Metaverse is still in its infancy and they rarely regard privacy
concerns. In contrast, we have considered model privacy and auction privacy issues in the design of the incentive
mechanism. Moreover, the non-cooperation relationship between MSPs makes the design of auction mechanisms
under a scenario of imperfect information. Therefore, the fairness and practicability of the auction mechanism of
UGC need to be holistically studied.

2.2 Blockchain and Federated Learning in Metaverse

Blockchain is an essential infrastructure for the decentralized Metaverse ecosystem [53], which ensures security
management and access control [12] for UGC with properties of decentralization, tamper-proof, and trustworthi-
ness [13]. A review [11] discussed the Metaverse based on blockchain from the technical point of view and put
forward some promising directions to innovate the usage of blockchain in Metaverse applications. Yang et al.
[55] discussed how blockchain-empowered artificial intelligence (AI) technologies in the three-dimensional (3D)
virtual worlds. Fan et al. [10] implemented a blockchain-based prototype to simulate a decentralized, fair and
transparent UGC trading platform, in which a dynamic game is adopted to model interactions among mobile
devices. Suhail et al. [45] proposed the usage of blockchain to target key challenges of untrustworthy data
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transmission and fault diagnosis in DT systems. However, there are few studies on the incentive mechanisms in
the blockchain-driven Metaverse.

FL as a collaborative distributed learning paradigm allows clients to share information by gradient parameters
of models instead of raw data [53], which efficiently assists in executing intensive computation on many edge
devices of MUs. Chen et al. [4] designed a collaborating mobile edge computing paradigm with FL for AR
applications. Moreover, there are some research works focused on FL-based digital twins. Lu et al. [33] utilized FL
to construct the digital twin models for IoT devices and bridge the gap between the physical system and digital
space in digital twin edge networks (DITENS). Lu et al. [34] further connected digital twins and wireless networks
by the digital twin wireless networks (DTWN), in which real-time data signals and results can be migrated to
the IoT edge devices. In terms of FL model utility, Zhang et al. [59] focused on trading off the privacy cost and
utility loss to maintain a provable privacy guarantee, and the results showed that there is no free lunch for the
privacy-utility trade-off. To address the risk of free-riding and unfairness, FedIPR [28] verified the ownership of
FL models by watermarks embedded into the model. However, the existing works fail to address how to trade
off the cost and utility of FL model training and determine the economic value of the FL models. Therefore, FL
model market equilibria and auction mechanisms need to be investigated in-depth.

3 SYSTEM MODEL

In the Metaverse service, the MUs interact with the virtual world via some intelligent edge devices with an
incredible amount of digital content created, i.e., UGC. In order to protect the ownership of creators, UGC can be
minted to NFT via blockchain for collecting, trading, and accessing. The buyers can bid for the NFT with access
right through digital currency based on blockchain. In this context, we focus on one novel type of UGC in the
form of an FL global model, which can be minted as FL-NFT by a decentralized autonomous organization termed
MU-DAQO. In this section, we propose an FL-NFT auction model and formulate an FL cost-benefit framework in
the process of FL-NFT minting.

3.1 FL-NFT auction model based on blockchain

We consider an FL-NFT auction model based on blockchain with N Metaverse users (MUs) labeled as U =
{U1,Us,...,Un} and M Metaverse service providers (MSPs) labeled as = {Py, Py, ..., Py}. All MUs are candi-
dates for organizing a decentralized autonomous organization (i.e., MU-DAO) voluntarily, which can perform
local model training and aggregate model parameters by a smart contract for a given period T. FL global models
as one type of UGC can be minted as FL-NFT via blockchain. MSPs can bid for the FL-NFT to subsidize the com-
puting resources cost and improve the user immersive experience to subside data contribution for heterogeneous
edge devices of MUs, such as AR glasses and VR head-mounted devices (HMDs). For any MU U; with dataset
Di =A{(x1,y1), (x2,Y2)s . ., (xa, yq) }, the loss function L(-) [60] can quantify the difference between the predictive
value f(mj, x;) and labeled value y;. For MU-DAQO, the target of FL tasks is to minimize the loss function L(-)
under budget constraints as

d
7(m;) = argmin éZL (f (mf—l,x,),yl)}, (1)

S.t.ici < iB]‘, (2)

where C; is the cost of computing resources and data contribution for U;, and B; is the subsidizing budget of P;.
The proposed PMS-AM system model based on blockchain consists of three phases: FL. model training, FL-NFT
minting, and FL-NFT auction, as shown in Fig. 2. In the FL model training phases, MUs can adjust the investment
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Fig. 2. The proposed PMS-AM system model based on blockchain. 1) FL model training process by Stackelberg game. 2)
FL-NFT minting process based on blockchain 3) MSPs bid for FL-NFT by auction mechanism.

of resources in local model training and privacy budget based on the Stackelberg game, in which the backward
induction is utilized to derive an equilibrium solution. In the FL-NFT minting phases, the smart contracts serve
the role of the aggregator to generate FL-NFT and mint FL-NFT in the form of an FL global model by consensus
within MU-DAO. In the FL-NFT auction phase, the HMM assists MSPs in choosing rational bidding strategies
according to historical bids and an auction contract determines multiple winners with access priority according
to sealed bids offered by MSPs.

1) FL model training

MUs are organized in a decentralized autonomous organization (i.e., MU-DAO) to participate in the FL model
training collaboratively after MUs decide on their training strategies by the imperfect information Stackelberg
game (IISG). MU-DAO initializes the FL model parameters according to the chosen machine learning model
and broadcasts them to MUs which begins local model training. The MU-DAO aggregates local models of MUs
by a smart contract, which can encode by programming language (e.g., solidity) in advance according to the
model aggregation algorithm, such as FedAvg [29], FedSim [40], FedAdp [37], FedSGD [5]. The smart contract
distributes the t-th round model parameter m’ to MUs, which can adopt the mini-batch stochastic gradient
descent algorithm [36] to update local model parameters as

|b;i|
g (m by —,%Z & )y’), ®)

where b; is the mini-batch data sample, U; updates local model parameters by m! = m:™! —y - g(m!™', b;). The
model training process repeats until the global model converges and FL global model m* is generated. In order
to protect the privacy of intermediate parameters, differential privacy [9] is utilized to disturb the gradient
parameters before sharing in MU-DAO. We adopt Laplace noise to disturb gradient parameters g(m!, b;) as

g (mi b;) =g (mib;)+ < Lap (/1, Ae—f) >, (4)

1

where p is the location parameters, and —f is the scale parameters of Laplace distribution, A f is the local sensitivity

of noise, ¢; is the privacy budget set by U
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Table 1. Main Notations and Definitions

Notation Definition

m* The model parameter of FL-NFT

ml? The model parameter of U; in #-th local iteration
g The perturbed gradient of the local model
14 The capacitance parameter
0; The device memory of U;
& The average memory consumption ratio of U;
Cy The computation cost factor of U;

Cf The privacy cost factor of U;

C; The total cost of U;

Q]'."* The model quality satisfaction of P;

F ]’"* The model freshness satisfaction of P;

bj The bid offered by MSP P;

®; The utility of U; in FL-NFT auction

¥; The utility of P; in FL-NFT auction

2) FL-NFT minting

When FL global model m* is generated, the smart contracts serve as the minters to collect the model parameters
m”, the minting timestamp 7,,+, and the public key of MU-DAO, etc. Then, miners pack this information to a file
named fl-nft.js, which is recorded in the blockchain to ensure that FL-NFT is truly decentralized. The ownership
of FL-NFT belongs to the whole MU-DAO and allows FL-NFTs to be sold by the consensus within MU-DAO. The
MSPs (i.e., buyers of FL-NFT) can get the access priority of FL-NFT to improve the user experience in Metaverse
services.

3) FL-NFT auction

MSPs offer bids to the blockchain-based auction platform, where the multi-winner sealed auction mechanism
is implemented in the auction smart contract to realize automatic auction execution. The auction smart contract
as the auctioneer determines multiple winners according to bids of MSPs, where the higher the bid, the higher
access priority of FL-NFT can be given until the auction clock expires. In Section 5, we adopt HMM to assist
MSPs in choosing rational bidding strategies according to historical bids, achieving individual rationality and
incentive compatibility. Due to heterogeneity between MUs in computing, storage, communication resources,
and data quality, there are free-rider and unfairness issues within MU-DAQO. Therefore, it is necessary to trade off
the cost and benefit to encourage more MUs to participate in MU-DAO fairly. We formulate the FL cost-benefit
framework in Section 3.2 and list notations and definitions used in this paper in Table 1.

3.2 FL Cost-benefit Framework of the Metaverse Users

Assisted by edge computing, rendering tasks in the Metaverse could be offloaded to VR devices of MUs in edge
networks. MUs must consume computing resources to train FL local models, such as CPU and memory. In
addition, MSPs are required to collect personal data from MUs to predict user behavior and social relationships.
Therefore, we mainly consider the computation and privacy costs. Based on the quantification of the above two
cost elements, the cost function of MU U; to perform the FL training task can be expressed as

Ci = Ciki + CPe;, Vk; € Z*,Ve; € RY, (5)

where C{ and Cf denote the unit cost factors of computation resource consumption and privacy disclosure,
respectively. k; and €; are the numbers of local iterations and the differential privacy budget [9], respectively.
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e Computation cost factor C;: The CPU performance of U; for local model training is f; (i.e., CPU clock
frequency), &; is the average memory occupation ratio in one iteration, 6; is the device memory, and the
memory occupation for local model training is £;0;. Based on the secondary energy consumption model of
CPU [47], the per unit computation cost of local model iteration can be defined as

Cf = alzisiff + (1-a) &6, (6)

where « is the computation cost adjustment factor, { is the effective capacitance [20], z; is the CPU cycle
when handling one batch of data, and s; is the batch size for each iteration of the local model.

e Privacy cost factor Cf :In order to minimize the risk of privacy disclosure when sharing the local model in
MU-DAQO, the privacy cost of intermediate parameters is considered. Inspired by [32], we adopt gradient-
norm to measure privacy preference. Thus, the per unit cost of privacy disclosure C‘f can be defined
as

C} = pln (1+][g (mi, b:)]]) (7)
where f is the privacy cost adjustment factor, the smaller the privacy budget ¢; is, the greater the noise

disturbance and the lower the model quality could be. Therefore, MU-DAO prefers to recruit more MUs
with larger privacy budgets to improve the quality of FL-NFT, which increases the privacy cost.

Note that we consider a general cost model without constraint on the type of blockchain. Gas fees need to be
considered an optional cost factor for Ethereum. In the FL-NFT auction market, the MSPs determine the bidding
strategies for FL-NFT by satisfaction evaluation. MUs need to decide on the training strategies for FL-NFT by
adjusting their local iterations and privacy budget to maximize their benefits. Unlike the traditional FL incentive
mechanism, in blockchain-driven Metaverse, both the FL model quality and immersive experience of MUs need
to be considered to achieve a holistic evaluation of the satisfaction of FL-NFT. With the above consideration, we
combine model quality Q;."* and freshness ij* to measure the satisfaction of MSP P; for the FL-NFT m* minted

by an MU-DAO, denoted as
Q F

. £\ € L\ € A .
o = (e ) = (o) e ®
e?
_J Q F Q, F_
st./l—eF>0,0<ejS1,0<ejS1,ej+ej—l, 9)

there e;?) and ef are demand price elasticity of model quality Q;" and freshness F ]’" determined by P;, respectively

The rationale behind Q;“ and F;”* is the contribution of MUs in FL model training, higher contribution of MUs
leads to higher satisfaction for MSPs, resulting in higher bids. Therefore, the satisfaction contribution of MUs to
the FL-NFT in model quality and freshness also needs to be measured by an appropriate metric. Let QI.Q and 6f
be the satisfaction contribution in model quality and freshness for U;, respectively, we have Q;" =yN QiQ and

F ]'" = YN, 0F. We define these two satisfaction contributions for U; in detail as follows:

o The model quality contribution 9?: For Uj;, the model quality contribution is determined by its local model
quality and raw data quantity (i.e., the local data size used for training). However, there may be a large
amount of redundant data in the training data, so the contribution evaluated by the total training data
size is one-sided. It is more practical to incorporate data quality based on cross-entropy [6] as H; =

4The parameters e/.Q =1and ef = 1 denote that only model quality or freshness is considered by Pj, 25.2 + ef = 1 denotes that both model

quality and freshness are taken into account by P;.

ACM Trans. Multimedia Comput. Commun. Appl.



A Privacy-preserving Auction Mechanism for Learning Model as an NFT in Blockchain-Driven Metaverse « 9

- Z?:l yilogf(x;), where f(x;) is the predicted value by the function f(-) and y; is the labeled value.
Therefore, Ql.Q can be denoted as

60 = Fol D (10)

i = & i yilogf (x:)
where uy > 0 and u; > 0 are the model utility parameters, which are set according to the loss function,
neural network structure and data distribution [29]. In this paper, uy represents the number of model
hidden layers, and u; represents the number of model output layers, R represents the total round of U;
participating in FL.

e The model freshness contribution 0F : Metaverse services allow users to immerse themselves via life-like
real-time interaction. The fresher FL-NFT leads to more accurate prediction, resulting in better immersive
experiences. Inspired by existing work [1, 58], a metric of the age of information (Aol) can be used to
denote the duration of MUs participating in FL-NFT minting. For Uj, the duration 7; mainly includes the
time of training T.", uploading Til and consensus T, which can be denoted as

T,=T"+T +TF, (11)

where T = log(1 /Hl-)gf', the smaller the value H; is, the higher accuracy of the local model could be,
yet resulting in a longer ltraining time for Uj, i.e., the numbers of local iterations. Furthermore, the model
parameters and other necessary information are broadcasted in MU-DAO with a communication delay,
which is related to the transmission data size d; and the communication resource @; (i.e., bandwidth) used
by Uj, defined as Til = m, where J; denotes the Signal-to-Interference-plus-Noise Ratio (SINR) for
the communication channel. T mainly depends on different consensus algorithms. A small value of T;
indicates a fresher local model, as per [31], the model freshness contribution Qf can be defined as

6 = log(1/Ty), (12)
We assume that under a rational auction market, U; can get the benefit ratio from the bids of FL-NFT, which is
. . . A W ; 02 I . or
determined by their model quality contribution ratio Tl.Q = SN0 and freshness contribution ratio 7} = 5 N o
i=1Yi i=1"§

Therefore, the benefit of U; from bid of P; can be formulated as

m* A Q m*_F
5 =q; (Qj ) Q4 fET L, (13)
where q; and f; are MSP P;’s unit satisfaction bidding strategies for Q;”* and Flm respectively.

4 STRATEGY OPTIMIZATION BASED ON STACKELBERG GAME

In this section, we construct an imperfect information Stackelberg game (IISG) [49] to trade off the cost and
benefit by optimizing the training strategies of MUs and bidding strategies of MSPs. In the first stage, the bidding
strategies of MSPs are determined by the satisfaction with model quality and freshness. In the second stage, MUs
adjust the numbers of local iterations and privacy budgets according to the bidding strategy, which can ensure
individual rationality and incentive compatibility. In the practical auction market, the MSPs demanding the same
FL-NFT are non-cooperative relationships, so the bidding strategies of competitors are hidden from MSPs due to
the fairness and privacy requirement.

4.1 Stackelberg Game Formulation

In the game decision, we assume that MSPs and MUs are all rational individuals, in which MUs can make the
decision in a distributed manner within MU-DAO. We model the auction interactions among MSPs and MUs as a

ACM Trans. Multimedia Comput. Commun. Appl.
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multi-leader multi-follower IISG, in which the MSPs are leaders and MUs are followers. We construct the IISG to
analyze the optimal strategies of MUs and MSPs as below.

1) Training strategy optimization of MU in Stage Il

In Stage II of IISG, each rational MU Uj; can adjust training strategies (i.e., local iterations and privacy budget)

according to the bids offered by the MSPs within a given game decision period T. Let K; 2 (ki1, kis, . . ., kipr) and

E; £ (€1, €, - . ., €in) be the local iterations and privacy budget of U; to the FL-NFTs demanded by MSPs #. The

utility function is usually a concave function with the property of decreasing marginal utility. Therefore, the

optimization problem for MU Uj; within a given game decision period T can be formulated as follows:
Problem 1. The utility maximization problem for MU U; in Stage II as

M
max <Di (Ki, El) = Z 5,']' (h (kij) +h (eij)) — Ci, (14)

Jj=1

M
s.t. C1: C,’ < 25,']‘ (h (kij) +h (eij)) ,Vj,
j=1

: kij + Zisi <T,
{zisiff b

where h(k;;) + h(e;;) indicates the benefit of MUs enjoying the Metaverse service, h(x) is defined by the o-fair
function adopted in [51, 52] defined as h(x) = ﬁxl_" >, 8;; is the benefit of MU U; from the bid of MSP P;, b; is
the bandwidth used for consensus communication with U;. C1 ensures that total bidding reward of U; exceeds
the cost. C2 expresses that the decision time of U; is limited and cannot exceed given the game decision period T.
Upon observing the bidding strategies offered by the MSPs, each MU U; determines the optimal training strategies
(K;,E}).

2) Bidding Strategy of MSPs in Stage I

In Stage I of IISG, each rational MSP P; determines bidding strategies (i.e., bids of model quality and freshness)

C2

according to the satisfaction of the FL-NFI, which are related to the training strategies of MUs. Let Q; 2

{q1j.92j,--..qnj} and F; 2 {fij, f2j - -, fnj} denote bids of model quality and freshness offered by MSP P;
accroding to the contribution ratio of MUs U, respectively. Then, the optimization problem for MSP P; can be
formulated as follows:

Problem 2. The utility maximization problem for MSP P; in Stage I as

max ¥; (Qj,Fj) = i (qijw?j +fijw{;. - (5ij), (16)

i=1

N
s.t. Cl: Z (qij +ﬁj) < Bj,Vj:
i=1
C2: tj < T,Vj,

where w?j and w{; are the winning probability for g;; and f;;, respectively, t; is the bidding decision time of MSP
P;. C1 ensures that the total bids are no more than the budget constraint for MSP P;. C2 expresses the decision
time is limited. The winning probability for MSP is relevant to the proportion of the total bid in general, which
h(x)
Ix?

3The function h(x) is non-decreasing and concave, i.e., % > 0 and < 0, which indicates decreasing marginal utility to the

Metaverse service.
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can be denoted as w?. = —% _ _and wlf. =—Ju 6 Dyeto the non-cooperative relationship
/ (%ﬁzgr,jrﬁ qij7 ) / (fiﬁzgfgjrﬁ fiyr )
among MSPs, the actual bids of other competitors are non-public information. At the beginning of the FL-NFT
auction, MSP P; can observe the bids of other competitors in the historical auction to determine initial bids. Then,
MSPs can leverage HMM to obtain the most likely bidding strategies of other competitors.

3) Stackelberg equilibrium

Stackelberg equilibrium is an optimal solution where the utilities of the followers can be maximized by choosing
the best responses given the optimal strategies of leaders. Problem 1 and 2 together form an IISG with the
objective of finding the Stackelberg equilibrium in Stage I and Stage IL, i.e., the solution at which the MUs’ utilities

are maximized by adjusting training strategies given that the MSPs offer their optimal bidding strategies. We
consider a multi-MU and multi-MSP game, where each MU U; has a finite set of training strategy A’ 2< K, E; >,

MSP P; has a finite set of bidding strategy A? 2< Q;,F; >, and A x Aj? — R
Definition 1: The Stackelberg equilibrium for IISG is an optimal training strategy < K}, E; > for MU U; given
a bidding strategy < Q7, F; > for MSP P; such that:

q)l(K:,ET) > sup{@i(K,-,E,-)}, kij € Z+, €ij S R+, Vl, (183)

Note that the Stackelberg equilibrium defines a situation where utility maximization for MUs and MSPs is
reached with the adjustment of action strategies. Condition (18a) means that MUs’ training strategy is an optimal
response to MSPs’ bidding strategy at each game decision period of the IISG. Condition (18b) implies that the
expected utility generated by the bidding strategy of MSPs is optimal under the constraint that the training
strategies of MUs must always be an optimal response. In the FL-NFT auction market, given the bidding strategies
of MSPs, the MUs act as followers to optimize their training strategies to realize the Stackelberg equilibrium. To
investigate the Stackelberg equilibrium of IISG, we adopt the backward induction in the following subsection to
address the Problem 1 and 2.

4.2 Solving Stackelberg Equilibrium of [1SG

In this subsection, we solve the Stackelberg equilibrium of IISG by the backward induction, where the existence of
the equilibrium is investigated by the negative definite of the Hessian matrix, and the first-order partial derivative
of utility derives the unique subgame equilibrium [42].

Theorem 1. The existence and uniqueness of the subgame equilibrium for MUs in Problem 1 can be guaranteed,
i.e., every MU has an optimal and unique training strategy (K, E;) for the numbers of local iterations and privacy
budget.

Proof. In order to guarantee the existence, we observe the Hessian matrix of ®;(K;, E;) with respect to K is

Lo TR i
oK? 9K JE; . K 17E
H(®;) = P, 2 = diag(H;;, H;;), (19)
OEioK;  oF
and
K _ [ 0*®i(KiEi) _ k 1k k
HE = | S ]j,j'e{l,z,__.,M}‘ diag(hs, W . HE) <0, (20)

®The parameters g;; and f; ;s are the predicted bids of other competitors excepting P; for model quality and freshness, respectively.
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where hfj =0; jki’j"’l. It is clearly that Hl.Ij(. is negative definite. Then, we derive the second derivative of ®;(K;, E;)
with respect to E; as
E _ | 8*®:i(KiEi) s € 1€ €
H;; = [ Je;; 01y ']j’j,e{lysz} = —diag(hj}, hy,, ... hi;) <0, (21)
where hf; = 6; jei‘j"‘l. We can easily derive that Hfj is negative definite, and thus H(®;) is negative definite and
®;(K;, E;) is concave. Therefore, it can be proved that the existence of equilibrium solution (K7, E;) in Problem
1.
We further take the first-order partial derivative of ®; to obtain the equilibrium solution as

(K E}) = [([Ce /8, RCP18ip)]. (22)

Since the numbers of local iterations of MUs are within the positive integer space Z*. MUs