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VCD-FL: Verifiable, Collusion-Resistant, and
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Abstract— Federated learning (FL) is essentially a distributed
machine learning paradigm that enables the joint training of a
global model by aggregating gradients from participating clients
without exchanging raw data. However, a malicious aggregation
server may deliberately return designed results without any
operation to save computation overhead, or even launch privacy
inference attacks using crafted gradients. There are only a
few schemes focusing on verifiable FL, and yet they cannot
achieve collusion-resistant verification. In this paper, we pro-
pose a novel Verifiable, Collusion-resistant, and Dynamic FL
(VCD-FL) to tackle this issue. Specifically, we first optimize
Lagrange interpolation by gradient grouping and compression
for achieving efficient verifiability of FL. To protect clients’
data privacy against collusion attacks, we propose a lightweight
commitment scheme using irreversible gradient transformation.
By integrating the proposed efficient verification mechanism
with the novel commitment scheme, our VCD-FL can detect
whether or not the aggregation server is involved in collusion
attacks. Moreover, considering that clients might go offline due
to some reason such as network anomaly and client crash,
we adopt the secret sharing technique to eliminate the effect
of federation dynamics on FL. In a nutshell, our VCD-FL
can achieve collusion-resistant verification and collusion attack
detection with supporting the correctness, privacy, and dynamics.
Finally, we theoretically prove the effectiveness of our VCD-
FL, make comprehensive comparisons, and conduct a series of
experiments on MNIST dataset with MLP and CNN models.
The theoretical proof and experimental analysis demonstrate that
our VCD-FL is computationally efficient, robust against collusion
attacks, and able to support the dynamics of FL.

Index Terms— Federated learning, privacy preservation, veri-
fiability, collusion-resistant, dynamics.

I. INTRODUCTION

A. Motivation

WITH the promotion of data privacy legislation, such as
the General Data Protection Regulation [1], the Cali-
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fornia Consumer Privacy Act [2], and the Personal Information
Protection Law [3], federated learning (FL) has emerged as a
distributed computing paradigm, which achieves collaborative
model training with the advantages of data availability but
invisibility [4]. Specifically, each client downloads global
parameters, iteratively performs local model training with
owned private data, and uploads the trained local gradient to
the aggregation server (AS) for updating [5]. However, the
shared gradients can be used to launch multiform inference
attacks for exploiting clients’ data privacy [6], [7], [8], such
as reconstruction attacks for identifying sensitive attributes in
the training dataset [9], [10] and membership inference attacks
for judging whether or not a specified target is contained in
the training dataset [11], [12].

To resist inference attacks in FL, existing work has proposed
various techniques such as secure multiparty computation [13],
[14] and differential privacy [15], [16], [17] to ensure gradient
privacy. Nevertheless, most of them are built on a common
assumption that the AS is honest-but-curious as indicated
in [18], [19], [20]. That is, it will not deviate from the
pre-arranged operations but try to get some private information
as possible. In fact, the AS would probably be malicious or
corrupted by adversaries, which can arbitrarily deviate from
the FL protocol by deliberately manipulating the training
process for benefits [21]. Aside from inferring clients’ privacy,
it would threaten the correctness of the aggregated results and
weaken the availability of the training model. For example,
to save computation overhead, it might reduce the number
of aggregation operations, or worse, return random results
without any operation. Moreover, any client might go offline
caused by some reason [22], such as network anomaly, crash,
and power outage. These will have serious implications for
the correctness of the aggregated results. To inveigle clients’
privacy, it might collude with some corrupt clients to design
crafted gradients for enticing specific privacy [19]. Therefore,
the following fundamental issues in FL should be solved:
(1) how to verify the correctness of the aggregated results
while supporting the federation dynamics, and (2) how to
protect clients’ privacy against collusion attacks.

To address the above issues, only a few schemes focusing
on verifiable and private FL have been proposed. Xu et al.
[18] first proposed VerifyNet, which supports the correctness,
privacy, and dynamics in FL based on the homomorphic
hash function integrated with pseudorandom technology and a
designed double-masking protocol. To meet all these needs
while overcoming the shortcoming that the communication
overhead is linearly dependent on gradient dimension in Veri-
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fyNet [18], Guo et al. [20] proposed a communication-efficient
protocol VeriFL, which optimizes the secure aggregation pro-
tocol in [22] by using the linearly homomorphic hash inte-
grated with the equivocal commitment scheme. Fu et al. [19]
proposed VFL, a verifiable, private, and collusion-resistant
FL based on Lagrange interpolation and blinding technol-
ogy. Although the overhead of the verification mechanism is
independent of the number of clients, the computation and
communication overheads are still very expensive. In addition,
the issue of dynamic verification is not considered due to
client dropout. In general, all these works cannot achieve
collusion-resistant verification or collusion attack detection.
Specifically, the AS may collude with some corrupt clients
to convince others of the manipulative aggregated results and
ultimately pass verification. Furthermore, none of them can
identify whether or not the AS is involved in collusion attacks.
Maybe it is just a lazy server that provides aggregated results
with low availability. By identifying the types of malicious
behaviors, it will be more beneficial to take targeted safeguards
for securing FL.

B. Our Contributions

In this paper, we propose VCD-FL, which is verifiable,
collusion-resistant, and dynamic FL. To achieve collusion-
resistant verification, we design a lightweight commitment
scheme for gradients and an efficient verification mecha-
nism based on optimized Lagrange interpolation to prevent
those corrupt clients that collude with the AS from passing
verification. Compared with Fu et al. [19], our VCD-FL
can reduce the computation and communication overheads
for verification by using gradient grouping and compression.
Besides, our VCD-FL can detect collusion attacks whether or
not the AS has been involved. To support the dynamics of
FL, we also integrate the secret sharing technique into our
designed mechanism. In conclusion, our contributions can be
summarized as follows.
• Collusion-resistant verification. We propose a lightweight

commitment scheme using irreversible gradient transfor-
mation to protect clients’ privacy. To prevent the manipu-
lative aggregated results from passing verification with an
overwhelming probability, we design an efficient verifi-
cation mechanism based on optimized Lagrange interpo-
lation. Compared with existing works that only consider
collusion-resistant privacy preservation, our VCD-FL can
also achieve collusion-resistant verification.

• Identifying malicious behavior. Although existing studies
can detect whether aggregated results are forged, they
are able to do very little to reveal the underlying rea-
sons. To make the security precautions more targeted,
we establish malicious behavior detection rules, which
can help defenders to determine if the AS is involved
in collusion attacks for passing verification or if it is
just a lazy server that returns incorrect results to save
computation overhead.

• Supporting federation dynamic. Considering that some
clients might go offline as a result of some reason such
as network anomaly, crash, and power outage, we inte-
grate our proposed verification mechanism with Shamir’s

TABLE I
LIST OF NOTATIONS

threshold secret sharing scheme [23] for tolerating a
certain number of clients dropping out. It can eliminate
the effect of federation dynamics on FL, and take little
impact on the privacy of the remaining clients.

• Lower computation and communication overheads.
We reduce the computation and communication over-
heads in [19] by designing a new method to generate
interpolation points for Lagrange interpolation. Moreover,
we further reduce the computation overhead by introduc-
ing the gradient compression algorithm [24]. Extensive
experiments conducted on real-world data demonstrate
that our VCD-FL is more practical.

C. Organization

The remainder of this paper is organized as follows.
We briefly introduce some preliminaries in Section II.
In Section III, we present the system overview of our VCD-
FL. In Section IV, we elaborate on the system design of our
VCD-FL. Theoretical analysis and experimental evaluation are
respectively discussed in Sections V and VI. In Section VII,
we describe the related work. Finally, we conclude the paper
in Section VIII.

II. PRELIMINARIES

In this section, we present some preliminaries needed for
the understanding of our VCD-FL. To facilitate readability,
we list some main notations and their descriptions in Table I.

A. Federated Learning

FL is a distributed machine learning framework, which
enables clients to collaboratively train a joint global model
without sharing each local dataset [4], [5], [25]. Specifically,
suppose there is a set P = {Pi | i = 1, 2, · · · , N } with
N clients and each client Pi ∈ P owns its private dataset
Di . At each iteration t , each client Pi downloads the latest
global model wt−1 from the AS and iteratively conducts
local model updating with stochastic gradient descent (SGD)
algorithm [26] as

wt
i = wt−1

− ηi gt−1
i , (1)
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where ηi is the local learning rate and gt−1
i = ∇wℓ(wt−1

; di ),
where ℓ(·) is the loss function on a single random example
di ∈ Di with a variety of forms [25]. To improve the
convergence rate, it is usually to use a mini-batch example
D′i ⊆ Di to compute the stochastic gradient. Finally, the AS
collects those updated local models and aggregates them with
the common FedAvg [4] as

wt
=

N∑
i=1

|D′i |

|
∑N

i=1 D′i |
wt

i . (2)

B. Lagrange Interpolation

Lagrange interpolation refers to a method that can construct
a polynomial accurately through all those given data points.
Formally, let a set of n data points be {(xi , yi )}

n
i=1, where

xi for i ∈ {1, 2, · · · , n} are all distinct, we can fit a unique
polynomial with the degree no greater than n − 1 as

L(x) =

n∑
i=1

yi L i (x), (3)

where the basis polynomial L i (x) is defined as

L i (x) =

n∏
j=1, j ̸=i

x − x j

xi − x j
, i ∈ {1, 2, . . . , n}. (4)

Obviously, L i (x) has the property of

L i (x j ) =

{
1 i = j
0 i ̸= j.

(5)

Thus, the Lagrange polynomial L(x) satisfies that L(xi ) =

yi . Recall that Fu et al. [19] first proposed to use Lagrange
polynomial to verify the aggregated results from the AS in
FL. They split each blind gradient into m − 1 parts as inter-
polation values and a random integer sequence is generated
as the corresponding interpolation point. For the gradient
with d-dimension, it needs to calculate md basis polynomials,
which will cause significant computation overhead. Therefore,
we reduce the computation and communication overheads by
optimizing Lagrange interpolation using gradient grouping and
compression for achieving efficient validation.

C. Commitment Scheme

A commitment scheme is a general function, which enables
a committer to commit a message for verification without
revealing any details. Specifically, it takes as inputs the mes-
sage to be committed and a one-time pad, and as output a
commitment to be publicly posted on a bulletin board. The
one-time pad acts as the decommitment, which should be kept
secret until the commitment is revealed. Any compute-bound
verifier believes the commitment by checking its correctness
with the committed message and the one-time pad. Note that
existing works [18], [20] use homomorphic hash commitment
to achieve verifiable FL, which still incurs high computational
complexity. In this paper, we design a lightweight commitment
scheme for gradients by irreversible gradient transformation
while protecting clients’ privacy.

Fig. 1. System model of VCD-FL.

III. SYSTEM OVERVIEW

In this section, we first introduce the design goals of our
VCD-FL, and then provide an overview of the system model
of VCD-FL and define the threat model.

A. Design Goals

To address the issues mentioned in Section I-A, we aim
to design verifiable, collusion-resistant, and dynamic FL. The
main design goals of our VCD-FL are as follows.
• Robust result verification. Our VCD-FL should guarantee

the robustness of correctness verification, which can sup-
port not only collusion-resistant privacy preservation but
also collusion-resistant verification. In addition, it should
guarantee the correctness of dynamic FL caused by
clients dropping out unexpectedly.

• Malicious behavior classification. Our VCD-FL should
discover the underlying reasons for the incorrect aggre-
gation result, which is helpful for taking targeted punish-
ments and measures. That is to identify whether the AS
is lazy for saving overhead or the AS colludes with some
corrupt clients for collusion attacks.

• Efficient model operations. Our VCD-FL should enable
clients to efficiently perform model operations including
local model training and aggregated result verification.
Besides, the communication overhead should be reduced
to accelerate the operations somehow.

• Lightweight privacy preservation. Our VCD-FL should
protect clients’ privacy against inference attacks and col-
lusion attacks while reducing some computation-intensive
operations to enhance practicality.

B. System Model

For the design goals, we depict the system model of our
proposed VCD-FL in Fig. 1, which consists of three entities,
namely the Trusted Authority (TA), the Clients, and the AS.
• TA is mainly responsible for system initialization, which

takes PRG as the pseudo-random generator and dis-
tributes parameters used in our VCD-FL to clients,
including a pairwise seed, a singular square matrix,
a pseudo-random vector sequence, and an integer
sequence. It is considered to be trustworthy, which will
neither participate in the federated training nor leak
related private information.

• Clients with some common interest can join together for a
specific model. Each client first downloads global param-
eters from the AS, then performs local model training on
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its owned private dataset, and finally uploads the coef-
ficients of grouped Lagrange polynomials as ciphertexts
to the AS. Once the AS returns the aggregated result,
each client can verify its correctness and decide whether
to accept or reject the update. Note that clients that try
to get sensitive information are honest-but-curious, and
some of them may be corrupt to help the malicious AS
pass the verification, or drop out during the training.

• AS takes charge of ciphertexts collection and aggregation,
and then distributes the aggregated result in each iteration
to clients for verification. It is deemed to be malicious,
which would launch inference attacks for prying into
privacy or forgery attacks for disrupting availability.

C. Threat Model

In our VCD-FL, we define the threat model as that the
TA is trustworthy, clients are honest-but-curious, and the
AS is malicious. Specifically, the TA is only to generate
and distribute parameters, which will not collude with others
to reveal clients’ privacy. Clients strictly perform operations
in accordance with the pre-defined FL protocol, but try to
infer some private information during the model training [18],
[20]. Furthermore, we consider that some corrupt clients may
conspire with the malicious AS to pass the verification. The
AS is considered to be an active adversary, which is out of
control and manipulates aggregated results to disrupt model
availability. Here, we sort the capabilities of the AS into two
categories as follows.
• Weak attack models. The AS with weak capabilities is

just to be a lazy server, which reduces the number of
iterations or just aggregates partially collected gradients
to save computation overhead. It would launch inference
attacks to determine if the raw training dataset contains
some specific data or even reconstruct sensitive attributes.

• Strong attack models. The AS with strong capabilities
would try its best to hide the modifications to the
aggregated result. It would collude with some clients
to falsify the aggregated result to deceive others. Even
worse, it might inveigle clients to expose more private
information by using a well-designed aggregated result.

IV. OUR VCD-FL CONSTRUCTION

In this section, to overcome existing schemes that cannot
achieve collusion-resistant verification and collusion attack
detection, we detail our VCD-FL construction in Fig. 2 for
implementing the design goals. Specifically, the main steps
of our VCD-FL consist of initialization, local model training,
ciphertext aggregation, and aggregated result verification.

A. Initialization

To begin with, TA initializes FL profiles and generates
parameters needed in our VCD-FL, as summarized in Algo-
rithm 1. We notice that we can reduce the overhead of ini-
tialization in [18], [22], and [20] by removing the negotiation
with key agreement. That is, TA directly generates a pairwise
seed si, j between any two clients Pi and Pj for masking

Fig. 2. Overview of our VCD-FL construction.

Algorithm 1 Initialization
Input: PRG.

Output: si, j , Ai , Z, shares of ρi , U M×M .

1 Generate a pairwise seed si, j between Pi and Pj ;
2 Generate an additional random seed ρi for Pi ;
3 Compute a normalized sequence Ai for Pi as

Ai ←
PRG(ρi )

max{|PRG(ρi )|}
;

4 for j = 1 to N do
5 Get T -out-of-N shares of ρi from TA as

{(Pj , ρi j )}Pj∈P← Share(T, P, ρi );
6 end
7 Generate a random integer sequence Z and a singular

square matrix U ;

the gradient. To deal with the dropout problem among the
clients, TA first generates an additional random seed ρi for
Pi and then distributes shares of ρi to each client by using
Shamir’s threshold secret sharing scheme [23]. To enhance
the interpolation accuracy, a sequence set Ai generated by
PRG(ρi ) for verification should be normalized as

Ai ←
PRG(ρi )

max{|PRG(ρi )|}
, i ∈ {1, 2, . . . , N }. (6)

Here, we improve the VFL [19] by grouping gradient
elements instead of splitting them. Each gradient gi with d-
dimension is divided into ⌈ d

M ⌉ groups, each group contains M
gradient elements. If the number of gradient elements in the
last group is less than M , we will add padding with 0 to the
rest. To make our VCD-FL verifiable, TA needs to generate a
random integer sequence Z = {ai |i = 1, 2, · · · , ⌈ d

M ⌉(M + 1)}

as the interpolation point set and a singular square matrix U
of size M × M for commitment generation.



3764 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Algorithm 2 Encryption and Commitment
Input: gi , U , si, j , Ai , Z.
Output: Coefficient Bi , Commitment Ci .

1 Blind the gradient gi as

g′i ← gi +
∑

Pj∈P,i< j

PRG(si, j )−
∑

Pj∈P,i> j

PRG(si, j );

2 Divide gi and g′i into ⌈ d
M ⌉ groups, where the k-th

groups are gi,[k] and g′i,[k], and k ∈ {1, 2, · · · , ⌈ d
M ⌉};

3 if len(gi,[⌈ d
M ⌉]

) < M or len(g′i,[⌈ d
M ⌉]

) < M then
4 Add the padding with 0 to the rest;
5 end
6 for k = 1 to ⌈ d

M ⌉ do
7 Compute the k-th group commitment Ci,[k] as

Ci,[k]← U · gi,[k];
8 Generate the k-th group Lagrange interpolation set

as {(a(k−1)(M+1)+ j , g′i ((k − 1)M + j)), (ak(M+1),

Ai (k))}, where j ∈ {1, 2, · · · , M};
9 Perform Lagrange interpolation to get fi,[k](x) as

fi,[k](x)←
k M∑

j=(k−1)M+1
[L j,[k](x)g′i ( j)] +

[Ai (k)
k(M+1)−1∏

h=(k−1)(M+1)+1

x−ah
ak(M+1)−ah

], where

L j,[k](x) =
k(M+1)∏

h=(k−1)(M+1)+1,h ̸= j+k−1

x−ah
a j+k−1−ah

;

10 Extract coefficients Bi,[k] of the k-th group
interpolation function in descending order as
Bi,[k]←

(
b0,⟨i,[k]⟩, b1,⟨i,[k]⟩, . . . , bM,⟨i,[k]⟩

)
;

11 end

12 return Bi = (Bi,[k])
⌈

d
M ⌉

k=1 , Ci = (Ci,[k])
⌈

d
M ⌉

k=1 .

B. Local Model Training

In this phase, each client Pi ∈ P first initializes its local
model by downloading the latest global model, and then
iteratively performs local model training on D′i ⊆ Di with
mini-batch gradient descent to compute the gradient gi as

gi = ∇wℓ(w; D′i ), (7)

where ℓ(w; D′i ) represents the loss function that indicates the
difference between the prediction and the ground truth.

Then, Pi will perform gradient encryption, grouping, and
commitment in turn, which are described in Algorithm 2.

1) Gradient Encryption: To achieve secure aggregation
of gradients, we combine the single-masking protocol and
the optimized Lagrange interpolation to protect gradient pri-
vacy against collusion attacks. Inspired by [22] and [18],
based on the ordered subscripts of clients, we first use the
single-masking protocol to blind each client Pi ’s local gradient
gi as

g′i = gi +
∑

Pj∈P,i< j

PRG(si, j )−
∑

Pj∈P,i> j

PRG(si, j ). (8)

It should be pointed out that compared with [22] and
[18], our VCD-FL employs the TA to directly distribute the

pairwise seed si, j , which removes the complicated negotiations
among clients. Moreover, it can resist inference attacks caused
by the leakage of the original gradient due to the dropout
misjudgment and threshold secret sharing in [18] and [20].

Then, each client Pi leverages the advantages of Lagrange
interpolation to deal with the blinded gradient for collusion-
resistant verification. We improve the VFL [19] by group-
ing gradient elements rather than splitting them. Specifically,
we adopt the same partition method described in Section IV-
A to group the blinded gradient g′i . Each client Pi generates
the k-th grouped Lagrange interpolation set as that the first
M points are {(a(k−1)(M+1)+ j , g′i ((k − 1)M + j)) | j =
1, 2, · · · , M} and the (M + 1)-th point is (ak(M+1), Ai (k)),
where k ∈ {1, 2, · · · , ⌈ d

M ⌉}. Therefore, the function fi,[k] is
computed on the k-th grouped Lagrange interpolation set as

fi,[k](x)=

k M∑
j=(k−1)M+1

[L j,[k](x)g′i ( j)]

+

Ai (k)

k(M+1)−1∏
h=(k−1)(M+1)+1

x − ah

ak(M+1) − ah

 , (9)

where L j,[k](x) =
k(M+1)∏

h=(k−1)(M+1)+1,h ̸= j+k−1

x−ah
a j+k−1−ah

.

Finally, according to the group indication, Pi uploads the
assembled coefficient vector Bi as the gradient ciphertext to
the AS as

Bi =
(

Bi,[1], Bi,[2], . . . , Bi,[⌈ d
M ⌉]

)
,

where each Bi,[k] denotes these M + 1 coefficients extracted
from fi,[k](x) in descending order according to the degree of
x as

Bi,[k] = (b0,⟨i,[k]⟩, b1,⟨i,[k]⟩, . . . , bM,⟨i,[k]⟩).

Obviously, the confidentiality of the Lagrange interpolation
set can enhance gradient privacy. Even if it leaks, as long as
at least two clients do not collude with the AS, our VCD-FL
can guarantee the gradient can hardly be deduced. The reason
is that si, j cannot be known to derive the gradient based on
equation (8). Moreover, given the d-dimensional gradient, the
number of Lagrange basis polynomials for interpolation is
about (M + 1)⌈ d

M ⌉, while it is (M + 1)d in the VFL [19].
Because our VCD-FL does grouping instead of splitting, the
computation and communication overheads can be reduced.
More details will be discussed in Section VI.

2) Commitment Generation: To protect gradient privacy
while preventing those corrupt clients from proselytizing
during the correctness verification of the aggregated result,
we propose a lightweight commitment scheme, which reduces
heavy computations in [18] and [20] by using irreversible gra-
dient transformation instead of cryptographic proof. Consider-
ing that the matrix U will be large if the gradient dimension d
is big, we first divide gi into ⌈ d

M ⌉ groups, where each group
contains M gradient elements. If the number of gradient ele-
ments in the ⌈ d

M ⌉-th group is less than M , it will be filled with
0 to the rest. That is, gi = (gi,[1], gi,[2], . . . , gi,[⌈ d

M ⌉]
), where

gi,[k] = (gi ((k − 1)M + 1), gi ((k − 1)M + 2), . . . , gi (k M))T .
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Next, each client Pi makes the commitment for gi,[k] as

Ci,[k] = U · gi,[k], (10)

where U of size M×M is irreversible for ensuring the gradient
privacy and gi,[k] is the M-dimensional column vector of the
k-th gradient group.

It is important to note that the multiplication computation
for commitment generation is lightweight and can be further
processed in parallel, which can significantly increase effi-

ciency. Subsequently, Pi will broadcast Ci = (Ci,[k])
⌈

d
M ⌉

k=1 and
receive commitments from other clients before uploading Bi to
the AS, which cannot convince those honest clients to accept
the forged result. More proof will be presented in Section V.

3) Interpolation Optimization: To reduce the interpola-
tion frequency while not compromising the model accuracy,
we introduce deep gradient compression [24] to get an opti-
mized gradient. Lagrange interpolation will be performed on
top of the gradient sparsification. The interpolation optimiza-
tion is described in Algorithm 3. Specifically, we adopt the
same way proposed in [24] to compute the cumulative gradient
Gi . To solve the staleness issue, we generally use a momentum
factor of 0.5 to compute Gi as

Gi = gi + 0.5 ·Gi , (11)

where the initial value of Gi is set to 0.
Afterward, each client Pi will get the optimized gradient gi

for the input of Algorithm 2 by selecting p% elements from
Gi with the largest absolute values. The selected elements to
be blinded are placed in the same position in gi , and the rest
elements in gi are set to 0. To avoid losing information, each
unselected element from Gi will accumulate locally until its
absolute value is large enough. Those selected elements in
Gi will be reset to 0. Apparently, the optimized gradient gi
will greatly reduce the interpolation computation overhead.
Because those interpolation points with g′i ( j) = 0 will have
no effect upon Bi,[k], Pi only needs to compute L j,[k](x)

with g′i ( j) ̸= 0. Compared with Algorithm 2, for the
k-th group interpolation, Pi originally requires computing the
interpolation M + 1 times in total, our Algorithm 3 reduces
the interpolation computation for Pi to about p% · M + 1
times. More details on overhead comparisons will be discussed
in Section VI.

In addition, we find that the frequent Lagrange interpolation
operation in gradient encryption also incurs high overhead.
Therefore, we propose grouping gradient elements instead of
splitting them to reduce the interpolation frequency. Theoreti-
cally, the interpolation computation overhead in our VCD-FL
is about 1

M of the VFL [19] under the same M , where M is an
integer that determines the degree of Lagrange interpolation
function.

C. Ciphertext Aggregation

We consider that the ciphertext aggregation operation runs
in a synchronous network. That is, the AS will perform
aggregation until it receives the ciphertext Bi from each client

Algorithm 3 Interpolation Optimization
Input: gi , Gi , p%.
Output: Optimized gi .

1 if iteration=1 then
2 Initialize Gi as Gi ← 0d×1;
3 end
4 Compute Gi as Gi ← gi + 0.5 ·Gi ;
5 Select p% elements with the largest absolute values

from Gi into gi ;
6 Set the rest elements in gi to 0;
7 Update Gi as Gi ← Gi − gi ;
8 return gi .

Pi and compute B as

B =
N∑

i=1

Bi = (

N∑
i=1

Bi,[1], . . . ,

N∑
i=1

Bi,[⌈ d
M ⌉]

). (12)

Afterward, the AS distributes B to each client Pi . Note
that because the ciphertext Bi is computed by g′i and Ai ,
our VCD-FL can guarantee the original gradient gi not being
inferred as long as the AS colludes with no more than
N − 2 clients. Compared with [18] and [22], our VCD-FL
can overcome the privacy leakage issue of the single-masking
protocol while supporting some clients who drop out for
some reason during the training process. That is because our
VCD-FL adopts threshold secret sharing [23] to ρi rather
than si, j . According to equation (8), even if the AS colludes
with N − 2 clients, it can hardly get the si, j between the
remaining two clients, which can prevent the AS from getting
the gradient.

D. Aggregated Result Verification

In this phase, each client Pi uses the received B to get
the gradient aggregated result and verifies its correctness with
previous commitments. The overall verification process of our
VCD-FL is summarized in Algorithm 4.

1) Gradient Decryption: To get the aggregated result of
gradients, Pi first reconstructs the aggregated interpolation
function f[k](x) of the k-th group with B[k] as

f[k](x) =

M+1∑
m=1

B[k](m)x M−m+1, (13)

where B[k](m) denotes the m-th element in B[k] and k ∈
{1, 2, . . . , ⌈ d

M ⌉}.
Then, Pi reconstructs the aggregated result g of gradients

with f[k](x) by taking the integer sequence Z as input, and
removing the inserted sequence Ai and the padding with 0 in
the ⌈ d

M ⌉-th group if it exists. That is,

g =
N∑

i=1

gi =

N∑
i=1

g′i

= (( f[k](a(k−1)M+k), . . . , f[k](ak(M+1)−1)))
T , (14)

where k ∈ {1, 2, . . . , ⌈ d
M ⌉}.
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Algorithm 4 Decryption and Verification

Input: B, Z, C = {Ci }
N
i=1, A = {Ai }

N
i=1.

Output: The aggregated result g.
1 for k = 1 to ⌈ d

M ⌉ do
2 Recover the aggregated function f[k](x) as

f[k](x)←
M+1∑
m=1

B[k](m)x M+1−m ;

3 for m = (k − 1)M + 1 to k M do
4 Compute the aggregated gradient with Z as

g(m)← f[⌈ m
M ⌉]

(am+⌈ m
M ⌉−1);

5 end
6 end
7 for Pi ∈ P do
8 Generate a random vector Ri ;
9 Broadcast Ri to the other clients;

10 Compute R as

R← (
N∑

i=1
ri,1,

N∑
i=1

ri,2, . . . ,
N∑

i=1
ri,M ·⌈ d

M ⌉
);

11 Divide R into ⌈ d
M ⌉ groups in the same way as gi ;

12 Compute the k-th group checksum
vi,k ← R[k] · Ci,[k];

13 Compute Vi for verification as Vi ←
∑⌈ d

M ⌉

k=1 vi,k ;
14 Compute the k-th group of S as S[k]← R[k] · U ;
15 Check the following two equations

f[k](a(M+1)k)
?
=

N∑
i=1

Ai (k), k ∈ {1, 2, . . . , ⌈ d
M ⌉};

16
d∑

m=1
S(m)g(m)

?
=

N∑
i=1

Vi ;

17 if Rule 1 holds then
18 The AS is considered to be trustworthy;
19 return g;
20 end
21 if Rule 2 holds then
22 The AS is considered to be a weak attacker;
23 Exit;
24 end
25 if Rule 3 holds then
26 The AS is considered to be a strong attacker;
27 Exit;
28 end
29 end

2) Result Verification: To verify the correctness of the
aggregated result g while protecting gradient privacy, the basic
idea is to judge whether the following equation actually holds,

R · g =
N∑

i=1

R · gi , (15)

where R is a d-dimensional vector.
Apparently, if g ̸=

∑N
i=1 gi , the equation is not satisfied

unless g is crafted to be in the same hyper-plane. However, this
basic verification mechanism cannot resist collusion attacks.
That is because R is not generated randomly in this case,
and those corrupt clients in collusion can craftily design R or
manipulate R·gi to help the malicious AS pass the verification.

To alleviate this issue, we design an efficient verification
mechanism on the basis of the previously generated commit-
ment. Specifically, Pi first distributes the other clients with Ai
and a random row vector Ri = (ri,1, ri,2, . . . , ri,M ·⌈ d

M ⌉
). Then,

Pi can compute R as

R =
N∑

i=1

Ri = (

N∑
i=1

ri,1,

N∑
i=1

ri,2, . . . ,

N∑
i=1

ri,M ·⌈ d
M ⌉

). (16)

Due to the simultaneous broadcast of Ri by each honest-
but-curious client, it is obvious that R is unpredictable and
cannot be manipulated as long as any client does not take part
in collusion. To prevent the corrupt clients from helping the
malicious AS pass the verification, Pi then groups R in the
same way as that of gradient gi and computes a random group
row vector S as the validation coefficient vector as

S = (S[1], S[2], . . . , S
[⌈

d
M ⌉]

),

where the k-th group vector S[k] is computed as S[k] = R[k] ·U ,
and U is the same singular square matrix of size M × M .

The verification process is on the basis of the previously
distributed commitment Ci . To achieve efficient verification,
Pi computes the checksum vi,k of each group in parallel. For
the k-th group, vi,k can be computed as

vi,k = R[k] · Ci,[k], k ∈ {1, 2, . . . , ⌈
d
M
⌉}. (17)

Finally, Pi computes Vi as Vi =
∑⌈ d

M ⌉

k=1 vi,k and releases Ai =

{Ai (k)}
⌈

d
M ⌉

k=1 for verification.
With the above information, our VCD-FL establishes the

first set of malicious behavior detection rules to identify
and differentiate the types of attack models as defined in
Section III-C, which alleviates the ambiguous issue in [18],
[19], and [20] for targeted precautions. Specifically, Pi checks
the following two equations, respectively as

f[k](a(M+1)k)
?
=

N∑
i=1

Ai (k), k ∈ {1, 2, . . . , ⌈
d
M
⌉}, (18)

d∑
m=1

S(m)g(m)
?
=

N∑
i=1

Vi . (19)

It is worth noting that f[k](a(M+1)k) and g(m) =

f[⌈ m
M ⌉]

(am+⌈ m
M ⌉−1) are calculated by the returned ciphertext

B from the AS, and S(m) denotes the m-th element in S.
In short, equation (18) can be used as the first step to verify the
correctness of the aggregated result, and equation (19) serves
to further validate whether or not the AS has colluded with
clients. Therefore, our VCD-FL defines the rules as
• Rule 1: If both equation (18) and equation (19) hold, the

AS is considered to be trustworthy.
• Rule 2: If both equation (18) and equation (19) do not

hold, the AS is considered to be a weak attacker.
• Rule 3: If equation (18) holds and equation (19) does not

hold, the AS is considered to be a strong attacker.
The entire verification process is summarized in Algo-

rithm 4. We can conclude that the AS is trustworthy for
passing the aggregation verification if and only if Rule 1 holds.
Otherwise, the aggregation verification fails, and the types of
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malicious AS with different attack capabilities defined by the
attack models in Section III-C can be distinguished respec-
tively using Rule 2 and Rule 3. More detailed explanations
will be proved in Section V.

E. Supporting Dynamic Verification

An important effect on the verification is the federation
dynamics. Due to some reason such as network anomaly,
crash, and power outage, there is a possibility that some
clients might drop out during the training process. Existing
works [18], [20], [22] have proposed to subtract off the masks
before gradient aggregation with the double-masking protocol.
However, they guarantee gradient privacy on the basis of the
assumption that any client would never reveal both online and
offline shares for the same client. It will be infeasible in our
VCD-FL because some clients might collude with the AS. Our
VCD-FL can guarantee privacy if no more than N − 2 clients
collude with the AS. Here, we analyze the verification process
on the basis of equation (18) and equation (19) when some
clients drop out during the training process.

In our VCD-FL, it is obvious that f[k](a(M+1)k) and g are
computed using B returned by the AS, which is not affected by
offline clients. Due to the fact that the gradient commitment
Ci has been distributed prior to the aggregation and R can
be computed using random vectors from online clients, the
computational processes of S and Vi will not be impacted.
When Pi has dropped out, to maintain the verification process
with the remaining clients without being affected by the loss
of Ai , we use Shamir’s threshold secret sharing scheme [23] to
share ρi of Pi in the form of T -out-of-N . Each client Pj ∈ P
can get a share ρi j . This allows ρi to be recovered even if
Pi drops out during the verification, as long as the minimum
number of clients remains alive is no less than T . Hence, even
if some clients fail to send Ai on time, we can get Ai with
the recovered ρi to verify whether or not equation (18) holds.

Furthermore, as long as there is a client that does not take
part in collusion, a forged aggregated result can be detected
by equation (19) in our VCD-FL. Because S generated by
the unpredictable R is random, even N − 1 clients collude
with the AS to forge the aggregated result, it can hardly make
equation (19) hold. A more detailed formal proof will be
presented in Section V.

V. THEORETICAL AND COMPARATIVE ANALYSIS

In this section, we theoretically prove the effectiveness of
our VCD-FL in terms of correctness, verifiability, collusion
resistance, and dynamics. Afterward, we conduct a compre-
hensive comparative analysis with those related works.

A. Correctness

Our VCD-FL defines correctness as ensuring that clients get
the correct aggregated result from the AS for updating their
local models if each entity performs its operations honestly.
More formally, we have the following Theorem 1.

Theorem 1: If the AS performs aggregation operations hon-
estly in our VCD-FL, the correct aggregated result will pass
the verification.

Proof : If the AS performs aggregation operations hon-
estly in our VCD-FL, each client Pi ∈ P can obtain the correct

aggregated result only if both equation (18) and equation (19)
hold.

For equation (18), according to the correct B returned by
the AS, each client Pi can recover the aggregated interpo-
lation function of the k-th group f[k](x). Because f[k](x) =∑N

i=1 fi,[k](x) and Ai (k) = fi,[k](a(M+1)k) according to equa-
tion (9), we can get

f[k](a(M+1)k) =

N∑
i=1

fi,[k](a(M+1)k) =

N∑
i=1

Ai (k), (20)

where k ∈ {1, 2, . . . , ⌈ d
M ⌉}.

For equation (19), we first compute the k-th group
aggregated gradients g[k] as g[k] =

∑N
i=1 gi,[k], where

gi,[k] = ( fi,[k](a(k−1)M+k), . . . , fi,[k](ak(M+1)−1))
T . Then,

we can compute

N∑
i=1

Vi =

N∑
i=1

⌈
d
M ⌉∑

k=1

vi,k =

N∑
i=1

⌈
d
M ⌉∑

k=1

R[k] · Ci,[k]

=

N∑
i=1

⌈
d
M ⌉∑

k=1

S[k] · gi,[k] =

⌈
d
M ⌉∑

k=1

S[k] ·
N∑

i=1

gi,[k]

=

d∑
m=1

S(m) f[⌈ m
M ⌉]

(am+⌈ m
M ⌉−1)+

⌈
d
M ⌉·M∑

m=d+1

S(m) · 0

=

d∑
m=1

S(m) f[⌈ m
M ⌉]

(am+⌈ m
M ⌉−1) =

d∑
m=1

S(m)g(m).

(21)

Therefore, according to the deduction of equation (20)
and equation (21), we can conclude that both equation (18)
and equation (19) hold. That will mean Rule 1 is satisfied.
Therefore, if the AS performs aggregation operations honestly
in our VCD-FL, the correct aggregated result will pass the
verification. ■

B. Verifiability

Our VCD-FL defines verifiability as the ability of each
client to independently verify the correctness of the aggregated
result under the two defined attack models.

To distinguish the false result from the true B returned
by the AS, here we use 1B (1B ̸= 0) to represent the
modification of the aggregated result. Therefore, the false
result B′ is B′ = B + 1B. According to the aforementioned
instructions in Section IV-D, Pi recovers the false aggregated
interpolation function f ′

[k](x) of the k-th group with B′[k] ∈ B
as

f ′
[k](x) =

M+1∑
m=1

B′[k](m)x M+1−m

=

M+1∑
m=1

(B[k](m)+1B[k](m))x M+1−m

= f[k](x)+

M+1∑
m=1

1B[k](m)x M+1−m, (22)

where B′[k](m) represents the m-th element in B′[k] with
M + 1 elements and k ∈ {1, 2, . . . , ⌈ d

M ⌉}.
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It is quite clear that the malicious AS can manipulate the
aggregated result by adjusting 1B under the defined threat
models in Section III-C. Therefore, we can draw the following
Theorem 2.

Theorem 2: If the AS returns a false aggregated result
in our VCD-FL, our detection rules can identify the false
aggregated result under the defined threat models with an
overwhelming probability.

Proof : If the AS attempts to evade the detection rules
successfully, it needs to ensure both equation (18) and equa-
tion (19) hold with f ′

[k](x).
For equation (18), according to equation (22), it is signifi-

cant that it holds only if

M+1∑
m=1

1B[k](m)aM+1−m
(M+1)k = 0, k ∈ {1, 2, . . . , ⌈

d
M
⌉}. (23)

If a(M+1)k is kept secret from the AS, it has been proved
that equation (23) is impossible [19]. However, in our VCD-
FL, those corrupt clients might collude with the AS to obtain
a(M+1)k , which makes equation (23) hold with an overwhelm-
ing probability by returning a crafted 1B. Our VCD-FL can
detect and identify the types of collusion behaviors, which will
be proved in Theorem 3.

For equation (19), each client recovers g′ with the returned
B′ from the AS, and the attackers aim to pass the verification
by essentially making equation (24) hold, that is

d∑
m=1

S(m)g′(m) =

N∑
i=1

Vi =

d∑
m=1

S(m)g(m). (24)

Therefore, it is equivalent to

d∑
m=1

S(m)[g′(m)− g(m)] = 0, (25)

where g′(m)−g(m) represents the modification by the attack-
ers, which can be controlled by the malicious AS. However, S
is generated only after receiving the aggregated result from the
AS. Because R is unpredictable, manipulating each element
S(m) ∈ S is nearly impossible. Therefore, as long as there is
any client in P that does not collude with the malicious AS,
the probability that equation (25) holds will be extremely low.

To sum up, we can conclude that once the malicious AS
returns a false aggregated result, our detection rules can
identify it with an overwhelming probability. The collusion
identification will be explained in Theorem 3. ■

C. Collusion Resistance

To make the crafted aggregated result pass verification,
the malicious AS might collude with some corrupt clients.
This will make the VFL [19] fail due to the leakage of
the interpolation sequences. We have demonstrated that our
VCD-FL can guarantee gradient privacy as long as the AS
colludes with no more than N −2 clients. Here, we prove that
our VCD-FL is collusion-resistant and capable of identifying
the types of collusion behaviors, as presented in Theorem 3.

Theorem 3: If the AS colludes with N − 1 clients at most,
the forged aggregated result by collusion attacks can be
detected in our VCD-FL with an overwhelming probability.

Proof : Without loss of generality, we assume that {Pi }
N ′
i=1

collude with the AS, where N ′ ≤ N − 1. To make the
forged aggregated result pass the verification, they are in
collusion to forge some information to make equation (18)
and equation (19) hold.

As proved in Theorem 2, equation (18) holds with an
overwhelming probability by returning a crafted 1B with
the exception of N ′ = 0. That is if there is no client in
collusion, equation (18) holds with a negligible probability.
Here, we prove that equation (19) is impossible even if N ′ =
N − 1 clients collude with the AS. To make equation (19)
hold, the goal of N ′ clients in collusion is to control V ′ as

V ′ =
d∑

m=1

S(m)g′(m)−

N ′∑
i=1

Vi

=

d∑
m=1

S(m)g′(m)−

N ′∑
i=1

d∑
m=1

S(m)gi (m)

=

d∑
m=1

S(m)(g′(m)−

N ′∑
i=1

gi (m)). (26)

Recall that S depends on R, which is calculated only after
getting the false aggregated result g′. It has been analyzed that
R is unpredictable as long as a client in P at least does not
take in collusion. Therefore, even if N ′ clients are in collusion
to craft g′, it is impossible to determine S. As a result, it can
control V ′ with a negligible probability even if N ′ = N − 1
clients take in collusion.

Therefore, we can conclude that the detection rules in our
VCD-FL can not only detect the forged aggregated result by
collusion attacks with an overwhelming probability but also
distinguish the types of attack models. ■

D. Dynamics

Dynamics in our VCD-FL refers to the fact that a certain
percentage of clients dropping out would not affect the pri-
vacy of the remaining clients or the correctness of gradient
aggregation verification. As for privacy, we have proved that
our VCD-FL can guarantee the gradient gi cannot be inferred
as long as the number of clients in collusion is no more
than N − 2. Here we demonstrate the correctness, as shown
in Theorem 4.

Theorem 4: If clients drop out during the verification pro-
cess, our VCD-FL can still work as long as the number of
dropped clients is no more than N − T .

Proof : Our VCD-FL works if and only if both equa-
tion (18) and equation (19) hold. For equation (18), if the
number of dropped clients is no more than N − T , then our
VCD-FL can recover ρi with T online clients using T -out-
of-N threshold secret sharing [23]. According to equation (6),
our VCD-FL can compute Ai for verifying the correctness of
equation (18).

For equation (19), even if N − T clients drop out, the
online client can still calculate an unpredictable R by summing
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TABLE II
VERIFIABLE FL SCHEMES: A COMPREHENSIVE COMPARISON

Ri of all online clients as long as at least one refrains
from collusion. According to Algorithm 2, each client Pi
makes a commitment Ci and distributes it to the others
before uploading Bi to the AS, thus Pi can calculate Vi
even if N − T clients drop out according to equation (17).
Likewise, according to Algorithm 4, the unpredictable S
can also be computed. Finally, the equation (19) can be
verified.

Therefore, we can conclude that our VCD-FL can effec-
tively support dynamic verification as long as the number of
dropped clients is no more than N − T . ■

E. Comparison

We compare our VCD-FL with existing verifiable FL
schemes [18], [19], [20], as shown in Table II. To protect
gradient privacy, our VCD-FL adopts the single-masking
protocol with a seed rather than two seeds in [19] to
blind raw gradients while reducing communication overhead.
It alleviates the assumption that any client would never
reveal both online shares and offline shares for the same
client [22], and solves the privacy leakage issue in [18] and
[20] by applying threshold secret sharing [23] to ρi rather
than si, j . To guarantee verifiability while protecting gradi-
ent privacy, we propose a lightweight commitment scheme,
which reduces heavy computations in [18] and [20] by using
irreversible gradient transformation instead of cryptographic
proof.

We find that all these works ignore collusion attacks during
the verification process. Some corrupt clients might help the
malicious AS to make the falsified aggregated result pass
verification. Our VCD-FL can achieve collusion-resistant ver-
ification and collusion attack detection. With the exception
of [19], all other schemes consider dynamic verification as a
result of client dropout. Our VCD-FL can support dynamic
verification as long as the number of dropped clients is no
more than N − T , while guaranteeing the gradient gi will
not be inferred as long as the number of clients in collusion
is no more than N − 2. Compared with [19], our VCD-FL
can provide better convergence stability and higher accuracy.
That is because the encoding scheme used in [19] will reduce
gradient precision.

VI. EVALUATION

In this section, we evaluate the performance of our VCD-FL
in terms of effectiveness, computation overhead, and commu-
nication overhead.

A. Experimental Setup

We conduct the performance evaluation of our VCD-FL
based on a prototype implementation. Clients and the AS in
our VCD-FL are simulated on a 64-bit laptop that has Inter(R)
Core(TM) i7-9750H, 2.6GHz CPU, GTX 1660Ti GPU, and
16GB RAM based on Windows 10. Then, we implement
the prototype using Python 3.8.8, PyTorch 1.8.1, and NumPy
1.19.2. The local training process is simulated in a multi-
processing manner.

We perform all the experiments on MNIST dataset [27] for
classification tasks. MNIST is a handwritten image dataset,
which contains 60,000 training samples and 10,000 test sam-
ples. Each sample is a digital grayscale image of 28×28 pixels,
which represents a handwritten number between 0 and 9.

We take a multi-layer perceptron (MLP) and a convolution
neural network (CNN) as the training models for our VCD-
FL, respectively. Specifically, the architecture of the MLP is
configured as three fully-connected layers with 784(input)-
128(hidden)-10(output). The number of parameters for the
MLP is (784+1)×128+(128+1)×10=101,770. The architec-
ture of the CNN is configured as two convolution layers with
5× 5 convolution kernels, where the first is with 10 channels
and the second is with 20 channels, and each is followed by
2 × 2 max pooling layer. Following the convolutional layers,
there is a fully connected layer with 50 neurons and an output
layer with 10 neurons. The number of parameters for the CNN
is 21,780. We conduct the local model training on a mini-batch
size of 100 randomly selected samples to balance accuracy and
efficiency.

B. Effectiveness

According to Table II, only the VFL [19] and our VCD-FL
adopt Lagrange interpolation to guarantee verifiability. Hence,
we analyze the effectiveness of our VCD-FL in terms of
accuracy and loss, as well as make comparisons with the VFL.
Fig. 3 shows the accuracy under different iterations by taking
the MLP and the CNN as the training models, respectively.
It can be seen that the accuracy of our VCD-FL has advantages
over the VFL. Specifically, the accuracy of the MLP is shown
in Fig. 3(a). After 300 iterations, the accuracy of our VCD-FL
can reach about 90.92%, while the VFL is about 88.90%.
Likewise, the accuracy of the CNN is shown in Fig. 3(b).
After 500 iterations, the accuracy of our VCD-FL can reach
about 94.83%, while the VFL is about 93.38%. There are two
reasons for this. On one hand, the VFL adopts an encoding
scheme that converts a gradient to an integer using a rounding
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Fig. 3. Accuracy comparison between the VFL [19] and our VCD-FL.
(a) Accuracy of MLP. (b) Accuracy of CNN.

Fig. 4. Loss comparison between the VFL [19] and our VCD-FL. (a) Loss
of MLP. (b) Loss of CNN.

method, which will reduce the gradient accuracy. On the other
hand, our VCD-FL adopts deep gradient compression [24]
to enhance accuracy and efficiency even further. Meanwhile,
we find that compared with our VCD-FL, the VFL would
cause a certain vibration phenomenon during the convergence
process, especially for the CNN. This is probably caused by
the encoding scheme, which loses some gradient accuracy.

Besides, we also conduct experiments on the loss of the
VFL [19] and our VCD-FL with the corresponding MLP and
CNN. The loss is measured by the widely-used cross-entropy
function for the multi-class classifier and the results are shown
in Fig. 4. It can be seen that compared with the VFL, our
VCD-FL causes less loss. On the whole, the loss of the MLP
is shown in Fig. 4(a). After 300 iterations, the loss of our
VCD-FL reduces to 0.323, while the VFL is about 0.422.
Likewise, the loss of the CNN is shown in Fig. 4(b). After
500 iterations, the loss of our VCD-FL drops to 0.176, while
the VFL is about 0.208. The reasons for these are the same
as those for the accuracy, which have been discussed above.

C. Computation Overhead

As we described in Section IV-C, the AS that is responsible
for ciphertext aggregation only needs to perform

∑N
i=1 Bi ,

where Bi is uploaded by each Pi ∈ P. Apparently, the
computation overhead of the AS is trivial to our VCD-FL.
Here, we mainly evaluate the computation overhead of our
VCD-FL on clients in terms of encryption overhead and
decryption overhead. Different from those schemes that upload
encrypted gradients to the AS, our VCD-FL uploads the
coefficient vectors as ciphertexts instead. Hence, we evaluate
the computation overhead of a client dealing with a gradient
that has different dimensions. It is worth noting that the
computation overhead mainly relies on the complexity of the
Lagrange interpolation process. To guarantee the fairness of
comparison and describe conveniently, we uniformly mark

Fig. 5. Encryption overhead of a client. (a) Encryption overhead with
different dimensions d of a gradient. (b) Encryption overhead with different
parameters M ′.

m−1 in the VFL [19] and M in our VCD-FL as parameter M ′,
where m−1 originally refers to the size of sequences for split
gradient interpolation and M originally denotes the number of
gradient elements in each group. In this way, we can make
comparisons under the same degree of interpolation function,
which eliminates the influence of symbols on evaluation
results. We have run the process of encryption and decryption
10 times to get the average.

1) Encryption Overhead: As we discussed above, the
encryption overheads of our VCD-FL and the VFL [19] are
mainly determined by Lagrange interpolation computation.
Recall that for a gradient with d dimensions, the VFL splits
each element in a gradient into M ′ parts and computes the
Lagrange interpolation function of degree M ′ with M ′ +
1 points, while our VCD-FL divides d elements in a gradient
into ⌈ d

M ′ ⌉ groups and each group determines the Lagrange
interpolation function of degree M ′ with M ′+1 points. Given
an element in a gradient, our VCD-FL only needs to compute a
polynomial, whereas M ′+1 polynomials need to be computed
in the VFL. Therefore, the total encryption overhead of our
VCD-FL is theoretically (d+⌈ d

M ′ ⌉)M ′, while (M ′+1)d M ′ in
the VFL. As a result, we can conclude that our VCD-FL has a

total encryption overhead of approximately
(d+⌈ d

M ′ ⌉)M ′

(M ′+1)d M ′ ≈
1

M ′
of that of the VFL.

To further support the conclusion in practice, we evaluate
the encryption overhead as the growth in dimension d of a
gradient. The results are shown in Fig. 5(a). It is significant that
the encryption time increases as d grows. The multi-processing
on limited resources may result in a longer time. When
M ′ = 4 and d = 100, 000, the encryption overhead of our
VCD-FL is about 20.439s while that of the VFL is about
96.914s. Here, the encryption overhead of our VCD-FL is
about a fifth of that of the VFL, which is slightly lower
than the theoretical value analyzed above. That is because the
VFL also includes an encoding using the Chinese Remainder
Theorem (CRT) during the training process, which slightly
increases the computation overhead.

By introducing gradient compression algorithm [24]
described in Algorithm 3, our VCD-FL only needs to compute
the interpolation p% · M ′ + 1 times in theory. Therefore, the
computation overhead of our VCD-FL is theoretically reduced
to approximately p% at most. As depicted by Fig. 5(a), the
encryption time decreases with the compression ratio increases
under the same d . By using compression rates of 50% and 25%
respectively, the encryption time under d = 100, 000 is further
reduced from 20.439s to 13.807s and 8.992s, accordingly.
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Fig. 6. Decryption overhead of a client. (a) Decryption overhead with
different dimensions d of a gradient. (b) Decryption overhead with different
parameters M ′.

TABLE III
COMMUNICATION OVERHEAD COMPARISON BETWEEN OUR VCD-FL

AND THE VFL [19]

Besides, given d = 10, 000, we investigate the relationship
between the parameter M ′ and the total encryption overhead.
Fig. 5(b) shows that as M ′ grows, the encryption time of the
VFL almost increases quadratically, while work done only
rises linearly in our VCD-FL. When M ′ = 9, the encryption
overhead of our VCD-FL is about 4.256s while that of the
VFL is about 36.972s. The reason is that our VCD-FL adopts
gradient grouping rather than gradient splitting, which will
make the impact on interpolation polynomial computation
be limited. As for an element in the gradient, each time
M ′ increases by one, one more multiplication calculation
for the corresponding interpolation polynomial computation.
Therefore, the growth rate of computation overhead of our
VCD-FL is nearly 1 but that of the VFL is about 2M ′ + 1.
It is observed that the total encryption overhead approximately
increases linearly in our VCD-FL but quadratically in the VFL.

2) Decryption Overhead: The decryption overhead is the
total of the overhead due to the aggregated result computation
and commitment verification, as shown in Fig. 6(a). It can
be seen that the decryption time almost linearly increases as
d grows. When M ′ = 4 and d = 100, 000, the decryption
overhead of our VCD-FL without any compression is about
1.633s while that of the VFL [19] is about 8.704s. There are
two reasons for this. On the one hand, because the aggregated
result g is obtained by taking as input Z, and removing Ai and
the padding with 0, the computation overhead increases lin-
early as d grows. On the other hand, according to equation (18)
and equation (19), the overhead of commitment verification
is almost linear with d . In addition, because the decryption
operation entirely depends on the input of Z, the impact of
Algorithm 3 using gradient compression algorithm [24] on
the decryption time will be limited. The experimental results
depicted by Fig. 6(a) further support our theoretical analysis.

Likewise, given a fixed d = 10, 000, we further investigate
the impact of M ′ on decryption overhead. As depicted in
Fig. 6(b), the decryption time of the VFL [19] almost linearly
increases while that of our VCD-FL decreases as M ′ grows.
The reason is that the decryption overhead is largely decided
by the aggregated result computation. It depends on the

Fig. 7. Communication overhead between a client and the AS. (a) Communi-
cation overhead with different dimensions d of a gradient. (b) Communication
overhead with different parameters M ′.

number of interpolation points, which is about (M ′ + 1)d in
the VFL and d + ⌈ d

M ′ ⌉ in our VCD-FL. As for commitment
verification, the overhead varies for the same reason. It is
reasonable to conclude that the decryption overhead of the
VFL linearly increases while that of our VCD-FL decreases
as M ′ grows.

D. Communication Overhead

To conveniently compare our VCD-FL with the VFL [19],
we only evaluate the communication overhead between a client
and the AS. Here, we measure the communication overhead by
the size of uploaded information. The comparative experimen-
tal results under the MLP and the CNN between our VCD-FL
and the VFL [19] are presented in Table III. As we discussed,
the communication overhead mainly depends on d and M ′.
When M ′ = 5, which means both generate interpolation
polynomials of degree 5, the communication overhead of the
VFL under the MLP with d = 101, 770 is about 2.975 MB
while that of our VCD-FL is about 2.405 MB. By using the
CNN with d = 21, 780, the communication overhead of the
VFL is about 0.637 MB while that of our VCD-FL is about
0.516 MB. The reason is that recall the gradient encryption
process in Algorithm 2, given a d-dimensional gradient, our
VCD-FL needs to upload d+⌈ d

M ′ ⌉ numbers to the AS, while d
numbers are uploaded in the VFL. However, because the VFL
adopts the CRT to encode each number into a large integer,
the size of each number in our VCD-FL is much less than
that in the VFL. On the whole, the communication overhead
of our VCD-FL is less than that of the VFL.

To further support the conclusion, given a fixed M ′ = 5,
we investigate the communication overhead under different
dimensions d of a gradient, and the result is depicted in
Fig. 7(a). It can be seen that the communication overhead
linearly increases as d grows. According to the above analysis,
in our VCD-FL, the size of each uploaded number takes 32 bit
and the communication overhead is about (d+⌈ d

M ′ ⌉)×32 bit.
In the VFL [19], it converts each uploaded number in a
gradient into a finite domain by multiplying with a scale
factor and truncating the remaining fractional part [28]. Note
that the ciphertext size of each gradient element in the VFL
is determined by the size of each interpolation value, the
size of the finite domain, and M ′, whose maximum is about
(M ′+1)×32 bit in theory. Because (d+⌈ d

M ′ ⌉) < (M ′+1)d for
M ′ > 1, the communication overhead of our VCD-FL is less
than that of the VFL. In fact, the size of generated ciphertexts
in the experiment is smaller than the maximum. Therefore, the
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reduction rate of the communication overhead is not so much
as the maximum.

Besides, given d = 100, 000, we also conduct a compara-
tive experiment of the communication overhead between our
VCD-FL and the VFL [19] under different parameters M ′.
The result is shown in Fig. 7(b). It can be seen that the
communication overhead of the VFL increases while that of
our VCD-FL decreases as M ′ grows. That is because as M ′

grows, the magnitude of the algebraic structure ring increases,
which takes more bits. However, it does not exist in our
VCD-FL and the increase of M ′ decreases the number of
groups, which results in the decrease of uploaded numbers
and reduces the communication overhead of our VCD-FL.

VII. RELATED WORK

In this section, we briefly review the state-of-the-art research
on verifiable FL. Generally, the AS may manipulate the
aggregated result unintentionally or intentionally, misleading
the training models. How to validate the correctness of the
aggregated result returned from the AS among those joint
clients for model training that do not fully trust each other
is crucial to the success of FL. Regarding this issue, most
existing works that focus on verifiable FL aim to solve the
problems such as privacy [18], [19], [29], performance [20],
and auditability [21], [30].

A. Centralized Verifiable FL

The original verifiable FL is proposed in [18], which
guarantees the verifiability using the generated cryptographic
proof by the AS and the privacy by the proposed double-
masking protocol. Fu et al. [19] proposed to use Lagrange
interpolation for verifiability, and blinding technology for
collusion-resistant privacy preservation. Zhang et al. [29] used
a bilinear aggregate signature to verify the correctness of
the aggregated result from the AS, and combined the CRT
and the Paillier homomorphic encryption to protect privacy.
To guarantee the verifiability of FL while improving the
performance, Guo et al. [20] optimized the secure aggregation
protocol in [22] by the proposed gradient hash commitment
and amortized verification mechanism.

B. Distributed Verifiable FL

Considering that the centralized AS might cause issues
such as single-point failure, model trustability, and privacy
leakage, blockchain as an underlying trust-building machine
has been introduced into verifiable FL [21], [30]. Especially,
Weng et al. [21] proposed an incentive mechanism based on
blockchains to achieve verifiable FL. Peng et al. [30] proposed
selecting an effective committee based on blockchains for
collective model aggregation and verifiability. However, the
potential drawbacks of blockchains such as efficiency and
scalability make these schemes impractical.

To the best of our knowledge, all these works are vulnerable
to collusion attack verification. The corrupt clients might assist
with the AS to make the falsified aggregated results pass
verification. In addition, the computation and communication
overheads caused by some operations with high complexity
are still very expensive.

VIII. CONCLUSION

In this paper, we have proposed VCD-FL, which is ver-
ifiable, collusion-resistant, and dynamic federated learning.
To guarantee verifiability while protecting gradient privacy
during the training, we have proposed an efficient verification
mechanism combined with an optimized Lagrange interpola-
tion and a lightweight commitment scheme. To sum up, our
VCD-FL can not only resist collusion-resistant verification but
also support differentiated threat models using our proposed
malicious behavior detection rules. Compared with existing
works, our VCD-FL can reduce computation and communica-
tion overheads, while achieving high-accuracy model training
and tolerating a certain number of clients dropping out.
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